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1 Introduction

A theory at Marr’s implementation level focuses on the relationship between the

algorithm and the nuts and bolts of a physical machine. When a physical system

implements an algorithm, its physical states should correspond to the algorithm’s

abstract inputs, outputs, and intermediate states. Changes in those physical states

should be governed by physical processes that mirror the corresponding changes

between the abstract symbolic or numerical states described at the algorithmic

level.¹ A theory at Marr’s implementation level aims to spell out which entities are

related by this relationship. It speciûes which elements of the abstract algorithm’s

speciûcation correspond to which elements of the implementing physical system.

In the case of predictive coding, it should tell us which neural states and physical

processes correspond to the numerical values andmathematical operations of the

ANN. Onemight expect it to describe the neural states and processes correspond,

for example, to the ANN’s hierarchical structure, prediction and error units, activation
function, and learning rule.

his article examines a number of approaches taken to implementation by predictive

coding. Section 2 introduces some general features of predictive coding at the

implementation level. Section 3, 4, and 5 explore a speciûc proposal about predictive

¹his kind of mirroring condition is generally supposed to be a necessary condition for the

physical implementation of any algorithm (Chalmers, 2012). It is not a suõcient condition however

– for a brief review of why, see Sprevak (2018).
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coding’s implementation – a view that I will call the ‘neocortical proposal’. Section

6 examines claims about implementation that go beyond the neocortical proposal,

including the suggestion that some of theANN’s features are implemented in thenon-

neural body’s morphology or in environmental features outside the head. Section 7

explores how predictive coding might appeal to diòerences between the physical

implementation of diòerent cognitive processes to explain apparent anomalies at

the computational and algorithmic levels – cases where it seems that the brain is not

minimising sensory prediction error. Section 8 examines a potential worry with

an unbridled application of this strategy: that predictive coding’s computational

and algorithmic level claims may be ‘immunised’ against disconûrming empirical

evidence. Section 9 provides a brief conclusion and review of predictive coding’s

overall research programme.

2 General features of a theory at the implementation level

2.1 Complexity, uncertainty, and a dilemma

Brains are, by any standard, extremely complicated physical systems. hey oòer

up a vast array of physical states and dynamics at many spatiotemporal scales.

Neurophysiological study appears to reveal a great deal of variation in the behaviour

of individual neurons, synapses, and sub-cellular mechanisms. Inside the brain’s

constellation of swirling states and processes, no one knows exactly which are the

ones responsible for the computation associated with cognition. It is not easy to

distinguish between physical responses in the brain that are functionally signiûcant
for implementing a computation from background activities that can be safely

ignored.

In contrast, computers like electronic PCs have a relatively simple internal physical

structure. hey aremade up from a small number of identical basic components

arranged in a uniform and repetitive manner. he physical states and processes

that implement their computations are relatively easily identiûed and discriminated

from background physical activity. We can say which physical states and processes

implement features of the computation – e.g. electrical potentials at transistor junc-

tions – and which states and processes – e.g. the colour of the insulation over wires,

the sound of the ventilation fan – can be ignored. Electronic PCs are engineered

to be comprehensible to us and to oòer clear and obvious patterns for physical

implementation. Our positionwith respect to the brain is diòerent. here are a huge

number of potential claims about implementation that onemight defend about the

brain. A vast number of neural responses could have a computational purpose. It

should come as no surprise that there is uncertainty about exactly which claim pre-

dictive coding should defend at the implementation level. An advocate of predictive
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coding might wish to hedge their bets – remain to some degree uncommitted –

about the details of how their algorithm is implemented. Advocates of predictive

coding correspondingly tend to take a rather guarded, cautious approach to their

commitments about implementation, or at least more guarded and cautious than

for their claims at the computational and algorithmic levels.²

However, they face a dilemma here. On the one hand, if they choose to avoid

commitment to a speciûc proposal at the implementation level (perhaps due to

uncertainty), then their algorithmic-level claims become hard to test. Evidence that

conûrms predictive coding’s claims at the algorithmic level needs to include obser-

vations showing that the neural mechanisms and responses that actually govern

behaviour conform to the proposed algorithm. However, unless one knows what

that algorithm entails in terms ofmeasurable physical changes in the brain – i.e. one

adopts some speciûc implementation-level theory – this cannot be done. On the

other hand, if they choose to adopt a speciûc proposal about predictive coding’s im-

plementation then, although their algorithmic-level claims become open to testing,

those claims also become hostage to the fortunes of that claim about implementa-

tion. If that claim about implementation were to turn out to be false or inaccurate,

then any conûrmation or disconûrmation that accrued to the algorithmic-level

proposal on its basis would be spurious. An advocate of predictive coding needs

to tread a line between: (i) making suõciently detailed assumptions about neural

implementation to open their algorithmic-level claims to empirical test; and (ii)

avoiding undue commitment to assumptions that may subsequently prove to be

false or inaccurate.

It is not obvious how to navigate this dilemma. hemost common approach adopted

in the predictive coding literature is to accept some relatively broad, provisional

assumptions about neural implementation and test algorithmic-level proposals on

that basis. Of course, this opens up the unwholesome possibility that if an empirical

test were to produce unwelcome results, onemight preserve one’s algorithmic-level

theory and simply modify assumptions at the implementation level so as to ût the

evidence. We will explore this risk in Section 8.

2.2 he neocortical proposal

Sections 3, 4, and 5 describe themost common broad proposal about how predict-

ive coding is implemented in the brain – the neocortical proposal. his is based

around the idea that relatively regular neurological structures in themammalian

neocortex, ‘cortical microcircuits’ – which have been long suspected to serve some

²For example, when discussing layers of the algorithm’s predictive hierarchy, Clark (2016): ‘I

remain deliberately uncommitted to the correct neural interpretation of this essential functional

notion of layers or levels.’ (p. 313n4)
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computational function – correspond to repeated elements in the ANN.³ Section

3 examines how the neocortex might implement hierarchical layers of the ANN.

Section 4 considers how prediction and error units might be implemented inside

cortical areas. Section 5 considers how precision weighting, associated with the

lateral connections between error units,might be implemented.

It is important to emphasise that the neocortical proposal is just one hypothesis

about predictive coding’s implementation. It is open to revision or even, in principle,

replacement. he neocortical proposal is also underspeciûed in certain respects:

key details regarding how some features of the ANN – e.g. its individual activation

values, its activation function, and its learning rule – are implemented remain to

be ûlled out. he neocortical proposal is also likely to be, at best, only a partial

account of predictive coding’s implementation. he ambition of predictive coding

is to explain all aspects of cognitive function. he neocortical proposal, however,

is silent about how predictive coding would operate in non-cortical areas of the

brain.4 Parts of the ANN may also be implemented in non-neural structures, such

as the non-neural body or external environment. he neocortical proposal does

not say anything about this. Finally, the neocortical proposal does not say how the

ANN would be implemented in agents who do not possess a neocortex, such as

birds.5 Despite these qualiûcations however, the neocortical proposal has become

the primary framework by which algorithmic-level claims about predictive coding

have been empirically tested.

2.3 Pushing complexity down to the implementation level

At both Marr’s computational and algorithmic levels, advocates of predictive coding

stress the universal and unifying character of their model. A single task and a
single algorithm are proposed to characterise all aspects of cognition. Onemight

wonder how this ûts with the undeniable diversity among the cognitive processes

displayed by, and the cognitive tasks encountered by, diòerent organisms, or by

the same organism at diòerent times or under diòerent conditions. Cognitive

processes and cognitive tasks are clearlynot all exactly alike in every respect. At some

point, predictive coding should somehow acknowledge this. It should explain, or at

least provide room for explaining, not just the similarities, but also the diòerences

³See Bastos et al. (2012); Friston (2005); Friston (2009); Mumford (1992); Rao and Ballard (1999).

See Douglas andMartin (2004); Harris and Shepard (2015) for a general review of the anatomical

structure and potential computational function of cortical microcircuits.

4See Büchel et al. (2014); den Ouden, Kok and de Lange (2012); Kanai et al. (2015); Miller

and Clark (2018) for proposals about how non-cortical brain structures might implement part of

predictive coding’s algorithm.

5For discussion of brain structures in birds that are homologous to microcircuits in themam-

malian neocortex, see Calabrese andWoolley (2015).
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between cognitive processes and tasks.

It is common for advocates of predictive coding to accommodate these diòerences

by introducing complications and variations primarily at the implementation level.

As previously observed, brains are not organised in an uniform fashion and are in

no sense simple physical systems. Given the huge range of physical mechanisms

that the brain aòords, the brain may usemultiple physical methods – possibly op-

erating over diòerent spatiotemporal scales or active under diòerent conditions –

to achieve the single computational eòects described in the ANN. On such a view,

one might expect a theory about the physical implementation of cognition to be

relatively complex and heterogeneous, even if the algorithm being implemented

and the computational task being solved are simple and uniûed.6 he complexity

and diversity displayed in cognition would re�ect – not the brain implementing a

collection of diòerent algorithms or computing many functions – but that it uses a

wide variety of physical processes to implement the same algorithm with the goal

of computing the same function. In Section 7, we will see how an appeal to these

diòerences at the level of physical implementation can help explain observations

that might otherwise appear problematic for predictive coding, such as our inability

to revise certain aspects of our generativemodel. To a ûrst approximation, the pre-

dictive coding research programme tends to ‘push down’ complexity and variation

between cognitive processes and tasks into complexity and variation at the level

of physical implementation. One should aim for a relatively simple, austere, and

uniûed theory at Marr’s computational and algorithmic levels, but expect a relatively

messy, complicated, and open-ended story at the implementation level.7

2.4 No simplemapping and ambiguous terms

A corollary to this is that predictive coding is not committed to an implementation-

level theory that maps the elements of the ANN onto physical hardware in any

simple or direct way. It is not committed to single ANN units being implemented

by single neurons, connections by synapses, unit activation values by neural ûring
rates. he ANN provides amap of a numerical algorithm; it is in no straightforward

sense a wiring diagram for the brain. Neurons, synapses, and neural ûring rates of

6his idea – that a single computational function may be implemented by diverse neural mech-

anisms that operate at diòerent timescales or are active in diòerent contexts – is not new. See Koch

(2004), pp. 471–477 for discussion of how the operation ofmultiplication could be implemented by

at least ûve dissimilar biophysical processes in the brain.

7Clark (2013a), pp. 193–194 describes a con�ict between the ‘Neats’ and the ‘Scruões’. He suggests

that predictive coding is likely to be at best only a qualiûed victory for the Neats: although the

model of cognition oòered by predictive coding at the computational and algorithmic levels is

simple and uniûed, what predictive coding says at the level of physical implementation is likely to

be disjunctive andmessy.
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course are likely to play a role in the implementation of predictive coding, but these

physical elements need not stand in anything like a simple one-to-one relationship

to the ANN’s units, connections, and activation values.8

An unfortunate and potentially confusing feature of the predictive coding literature

is that terms are sometimes used in away that suggests that there is a simplemapping.

Expressions such as ‘hierarchical layer’, ‘connection’, ‘feedforward pathway’, ‘feedback

pathway’, ‘lateral connection’ may be used to refer to either abstract features of the

algorithm or physical features in the brain. A ‘lateral connection’ might mean an

element of the ANN (a weight in Σ) or a physical connection (such as a synapse)

between neurons. Of course, onemight propose that there is a relationship between

the two: onemight claim thatANN ‘lateral connections’ are physically implemented

by neural ‘lateral connections’. But it is equally possible, and as we will seemore

likely, to say that the relationship between the two is more indirect. In principle,

a lateral connection between error units of the ANN might be implemented by

any number of physical relationships in the brain, and these physical relationships

may have little in common with each other than their shared computational role.

We will see in Section 5 that two rather dissimilar kinds of physical response –

neuromodulator release and fast gamma-band synchronisation – are proposed to

be among the physical resources that implement lateral connections between ANN

units.

3 Implementing layers of the network

his section describes how hierarchical layers of the ANN may be implemented

in themammalian neocortex. he neocortex is organised into between 50 to 200

anatomically distinct cortical areas. hese areas connect to each other in a relatively

selective way: neurons inside one cortical area tend to project onto neurons in

only a few other cortical areas. hose cortico-cortical connections also tend to

be reciprocal: if neurons in cortical area A project to cortical area B, it is likely

that neurons in B will project to A. he overall pattern of synaptic connectivity

between cortical areas is commonly interpreted as having a hierarchical structure

(Felleman and Van Essen, 1991).9 Cortical areas are classiûed as ‘higher’ or ‘lower’

in the anatomical hierarchy depending on how far they are from a sensory or motor

8See Bogacz (2017): ‘Even if the free-energy framework does describe cortical computation, the

mapping between the variables in the model and the elements of the neural circuit may not be

“clean” but rather “messy”, i.e. each model variable or parameter may be represented bymultiple

neurons or synapses.’ (p. 209).

9Although see the worries they raise about potential irregularities in the hierarchical structure

(Felleman andVan Essen, 1991, p. 31). heremay be also bemultipleways to divide up the neocortex

into structures that are approximately hierarchical (Hilgetag, O’Neill and Young, 1996).
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boundary. his distance is measured by theminimum number of synaptic steps

– how many neuron-to-neuron hops – would be needed to reach the boundary.

Projections from lower cortical areas (e.g. primary visual cortex, primarymotor)

tend to converge on targets in higher cortical areas (e.g. secondary sensorimotor

areas or association areas). hese higher cortical areas send reciprocal connections

back to the lower areas. he synaptic pathways that go from lower to higher cortical

areas – ‘ascending’ the hierarchy – tend to be excitatory. he synaptic pathways

that go from higher to lower cortical areas – ‘descending’ the hierarchy – tend to be

inhibitory.¹0

If the functional response of neurons is measured (using a technique like fMRI),

and cortical areas are individuated in terms of their function rather than their

anatomical structure, then the locations and relationships between the resulting

regions tend to align closely with those of an anatomically individuated cortical

hierarchy (Glasser et al., 2016). he structural anatomical hierarchy appears to

coincide with a functional processing hierarchy. Functional spiking responses in

diòerent cortical areas appear to play diòerent roles in cognitive processing and

those roles appear to be related to each other in a roughly hierarchical fashion.

Spiking activity in lower cortical areas generally tends to be associated with the

brain tracking ûne-grained features in speciûc sensorymodalities (e.g. patches of

contrast in small parts of the visual ûeld). Spiking activity in higher cortical areas

generally tends to be associated with the brain tracking abstract and large-scale

features that span multiple sensory modalities (e.g. objects, faces, hands).¹¹

he neocortical proposal suggests that cortical areas implement the functional layers
of the ANN. he hierarchical structure of the neocortex and projections between

cortical areas implement the hierarchical structure and pattern of connections

between ANN layers. Lower cortical areas (closest to the sensory or motor bound-

aries) implement lower layers of the ANN (closest to the input, x). Higher cortical

areas (furthest from the sensorimotor boundary) implement higher layers of the

ANN (furthest from input, x). Ascending, excitatory anatomical pathways in the

neocortex implement feedforward, excitatory connections between layers of the

ANN. Descending, inhibitory anatomical pathways implement feedback, inhibitory

connections between layers of the ANN. Neural responses in lower cortical areas

implement activity in lower layers of the ANN – both are associated with tracking

more ûne-grained features in the sensory input. Neural responses in higher cortical

areas implement activity in higher layers of the ANN – associated with tracking

¹0For a review of this pattern of neocortical connectivity, seeHilgetag andGoulas (2020); Markov

and Kennedy (2013); Mumford (1992).

¹¹See Ungerleider and Haxby (1994). Ricci and Serre (2020); Serre et al. (2005) give a helpful

overview of the functional hierarchy for the visual cortex along with a non-predictive-coding

computational model of these responses.
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more abstract and large-scale features in the sensory input

Figure 1: Neocortical proposal about the physical implementation of predictive

coding.

Rao and Ballard (1999) suggest that an ANN layer consists in prediction and error

units that stand in a one-to-one relation to each other (e.g. units yS1 and eS1 in Figure
1 form a layer). Prediction errors are passed ‘up’ the ANN between layers, whereas

prediction values are passed ‘down’. he weights of the connections between ANN

layers encode the generativemodel (theW weights). If we combine this concept of

an ANN layer with the neocortical proposal about implementation, then one would

predict that neocortical areas send prediction errors ‘upwards’ along ascending,

excitatory anatomical pathways to higher neocortical areas, and prediction values

‘downwards’ along descending, inhibitory anatomical pathways to lower neocortical

areas. he cortico-cortical connections that link diòerent cortical areas modulate

these signals and the eòective synaptic strength of those connections implements the

generativemodel. his results in one of themost frequently cited claims associated

with predictive coding: error signals �ow forwards in the brain (from lower to higher

cortical areas), and prediction signals �ow backwards (from higher to lower cortical
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areas).¹²

Spratling (2017) describes an alternative way of dividing up the ANN into layers.

On his proposal, an ANN layer consists in prediction and error units that are fully

connected to each other via weighted connections (e.g. yS1 and eS0 in Figure 1

form a layer).¹³ Prediction values are passed ‘up’ the ANN between layers, whereas

prediction errors are passed ‘down’. Unlike with Rao and Ballard’s model, the

connections between ANN layers shuttle prediction values and error values around

without altering them and the weighted connections inside a layer encode the

generativemodel (theW weights). If one combines Spratling’s concept of an ANN

layer with the neocortical proposal about implementation, then one would predict

that neocortical areas send prediction values ‘upwards’ along ascending, excitatory

anatomical pathways to higher cortical areas, and predictions errors ‘downwards’

along descending, inhibitory anatomical pathways to lower neocortical areas. he

cortico-cortical connections that link diòerent cortical areas transmit prediction

values and prediction errors around the brain and do not implement the generative

model; that is implemented by connections inside the cortical areas. his results in

a claim that is diametrically opposed to Rao and Ballard’s: prediction signals �ow
forwards in the brain (from lower to higher cortical areas), while error signals �ow
backwards (from higher to lower cortical areas).¹4

hat two contradictory predictions about brain function can be derived from the

same abstract numerical algorithm should encourage some degree of caution and

humility when assessing the empirical content of predictive coding. It illustrates just

how tightly predictive coding’s predictions about cognition and brain function are

indexed to the ûne print of its proposal about physical implementation. Evidence

that the brain implements a predictive coding algorithm only holds conditional

on assumptions about which bits of the algorithm map onto which bits of neural

hardware. We will explore this issue regarding the empirical content of predictive

coding in more detail in Section 8.¹5 For the sake of simplicity, in the next two

sections I will assume that units in the ANN are grouped into layers as Rao and

Ballard suggest.

¹²For examples of this, see Bogacz (2017); Clark (2013b), pp 187–188; Friston (2005); Friston

(2009).

¹³See Sprevak (forthcoming[b]), Section 4.

¹4See Kok and de Lange (2015), pp. 224–225; Spratling (2008).

¹5For a helpful discussion of this issue and a wider contextualisation of the problem in cognitive

neuroscience, see Teufel and Fletcher (2016), pp. 2605–2606.
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4 Implementing prediction units and error units

his section describes how physical features in the brain implement the ANN’s pre-

diction and error units. Cortical areas contain millions of neurons ofmany diòerent

types.¹6 he structure of a cortical area is usually divided into six anatomical layers

(labelled I–VI). hemost common neuronal cell type inside a cortical area is the

pyramidal neuron, which itself comes in many diòerent biological subtypes.¹7 Pyr-

amidal neurons are distributed primarily in layers II–V. Smaller pyramidal neurons

tend to occur in the layers closer to the outer surface of the cortex (anatomical

layers II–III). In the neocortical proposal, these are called the ‘superûcial’ pyram-

idal cells. Larger pyramidal neurons tend to occur in layers closer to the centre of

the brain (anatomical layers IV–V). hese are referred to as ‘deep’ pyramidal cells.

Superûcial pyramidal cells typically send excitatory projections forwards in the

neuroanatomical cortical hierarchy to deep pyramidal cells in higher cortical areas.

Deep pyramidal cells typically send inhibitory connections backwards in the hier-

archy to superûcial pyramidal cells in lower cortical areas. he neocortical proposal

claims that superûcial pyramidal cells implement error units and deep pyramidal cells
implement prediction units.¹8

he neocortical proposal does not suggest that there is a simple one-to-onemap-

ping between ANN units and pyramidal neurons – each pyramidal cell does not

implement exactly one ANN unit. It is hard to see how a one-to-one mapping

could be plausible. First, the input–output behaviour of a pyramidal cell does not

correspond any obvious way to that of an ANN unit. Second, it is unclear how a

single pyramidal cell, with a behaviour that is stochastic and sensitive to thermal

noise, would be capable of reliably storing and transmitting over time a continuous

numerical value – which is what is required of an ANN unit. hird, individual

neurons appear to be redundant to the brain’s function in a way that individual

ANN units are not. Individual pyramidal neurons die or change their response

proûle without any apparent computational side eòects, whereas ANN units are

o�en treated as non-redundant contributors to the algorithm for inference and

learning; in the probabilistic interpretation, each ANN unit represents themean

value of a unique environmental variable.¹9 Advocates of the neocortical proposal

typically suggest that each ANN unit is implemented by a population of pyramidal

¹6Classifying cortical neurons into discrete biological types can be done in many diòerent ways

based on variations in their morphology, electrophysiology, connectivity,molecular biology, and/or

expression of genes and proteins (Masland, 2004; Stevens, 1998; Zeng and Sanes, 2017).

¹7See Spruston (2008). here is also within-cell-type variation for each proposed type of pyram-

idal cell, see Cembrowski and Spruston (2019).

¹8Bastos et al. (2012); Bogacz (2017); Friston (2005); Mumford (1992).

¹9See Sprevak (forthcoming[b]), Sections 2.5, 5

10



neurons.²0

According to the neocortical proposal, error and prediction units are physically

distinguished from each other by the cortical layer in which they appear (superûcial

versus deep). But within a cortical layer, how are single ANN units distinguished

from each other? It is possible to imagine the brain might exploit any number of its

physical or functional properties here. Cortical cellswithin a layermight be grouped

together and distinguished from others based on their physical proximity, by their

connectivity, by correlations in their ûring patterns, or by their neuronal subtype.

In theory, the principle that determines which cells correspond to single ANN units

might vary between diòerent cortical areas or change over time. he neocortical

proposal is silent about the details here. All that is proposed is that in some respect

(yet to be determined), ANN units are implemented by functionally distinct neural

populations. No experimental paradigm has yet attempted to probe the neural basis

of predictive coding at the resolution of single prediction and error ANN units.

Indeed, the evidence for the proposed laminar separation of all prediction and error

units – i.e. that prediction errors (e) are exclusively implemented by superûcial

cells and prediction values (y) are exclusively implemented by deep cells – remains

inconclusive and controversial.²¹

Let us set aside the question of how to divide cortical pyramidal cells into popula-

tions that correspond to individual ANN units, and consider a separate question:

How do those neural subpopulations, wherever they are, encode the continuous nu-

merical values associated with individual ANN units – viz. the ei or yi values? his

is also le� largely open by the neocortical proposal. One possibility is that the ûring

rate of the neural subpopulation encodes the activation level of its corresponding

ANN unit. Typically, such schemes assume there is an approximatelymonotonic

relationship between the physical quantity and the encoded number –more rapid

ûring encodes a higher activation value in the corresponding ANN unit.²² An

encoded ei or yi valuemight, for example, be proportional to the average ûring rate,

or to the log of the average ûring rate. However, the neural subpopulation might not

code for these values using its ûring rate, but instead rely on some other physical

property, such as the timing of spikes within the population, the variability among

²0See Clark (2013b), p. 188; Clark (2016), p. 46; Friston (2005), p. 826.

²¹Kok and de Lange (2015) observe that currently there is a ‘conspicuous lack of direct evidence’

for superûcial and deep pyramidal cells encoding prediction errors and predictions respectively (pp.

232–233). Heilbron and Chait (2018) found ‘no evidence in the auditory domain’ for this claimed

separation. For techniques that might uncover such a separation, see discussion of functional

measurement of cortical laminae with higher temporal and spatial resolution in de Lange,Heilbron

and Kok (2018), pp. 773–775.

²²Friston assumes a rate-based neural coding scheme (neural ûring rates encode the numerical

values of predictions and errors) in his account of predictive coding’s implementation (Kanai et al.,

2015, p. 11).
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individual responses of the population, or the phase of its ûring relative to other

patterns in the brain. Alternatively, the population might encode the numerical

values using a digital coding scheme, where no continuous function would take one

from themagnitude of physical responses to stored values. Digital encoding is how

our electronic PCs store numerical values, and it opens the door to all manner of

compression schemes and eõciencies. In general, how neural populations encode

the numerical values that feature in their proposed algorithms (such as, for example,

how they encode the suõcient statistics of subjective probability distributions in

probabilistic inference algorithms) is largely unknown and the subject of much

speculation (Pouget et al., 2013). Rasmussen and Eliasmith (2013) criticise predictive

coding for lack of speciûcity here, arguing that a lack of detail about implementa-

tion of these numerical values risks making predictive coding’s algorithmic-level

proposal impossible to test.

Empirical studies o�en refrain from making speciûc or particularly detailed com-

mitments about predictive coding’s physical implementation. hey tend to rely on

fairly broad assumptions that would be consistent with a wide range ofmore spe-

ciûc proposals about implementation. A common assumption is that, if predictive

coding is correct then neural activity in deep cortical layers should be somehow

correlated with prediction occurring, and neural activity in superûcial cortical

layers should be correlated with prediction errors occurring. his means that if

one were to apply an appropriate data-analysis technique – which might involve

relatively sophisticated statistical methods, careful management and curation of the

data – those predictions and errors could be recovered from that neural data. his

relatively minimal assumption is compatible with many speciûc proposals about

implementation. However, it only tells us whether experimenters can recover predic-

tion or error information from the neural data (perhaps by using rather complex

and roundabout methods). It does not show that the brain itself uses that particular

encoding scheme for storing predictions or errors. Such studies may show that

neural observations are consistent with brains using deep and superûcial layers to

encode prediction and error data. However, they do not show that predictive coding

oòers the best or the only interpretation of that neural data.²³

Finally, it should be stressed that predictive coding’s neocortical proposal focuses

on a handful of relatively broad-brush patterns in neocortical organisation. Itwould

be amistake to think that these patterns exhaust the structure of the neocortex, or

that the features on which it relies are perfectly regular and exceptionless. Cortical

biology is extremely complicated and diverse. Onemight hope that at least some

of this complexity and diversity can be abstracted away and ignored in a compu-

²³See Muckli (2010). For a helpful discussion of this issue, see Kok and de Lange (2015), pp

229–231.
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tational account of cognition (like the colour of insulation over wires inside an

electronic PC). However, it seems reasonable to leave open the possibility that at

least some of that physical complexity and diversity might have a computational

role, and that predictive coding’s neocortical claim would need to be elaborated

to accommodate it. At this stage, exactly how one should develop the neocortical

proposal to accommodate the complexities and irregularities of real-world cortical

organisation is unknown.²4

5 Implementing precision weighting

his section describes how the precision weighting of error signals might be imple-

mented in the brain. Precision weighting allows certain prediction errors to count

for more than others during the prediction-error-minimisation process. At the

algorithmic level, precision weighting is modelled by weighted lateral and intrinsic

connections between ANN error units.²5 hese connections suppress or boost the

activation levels of certain error units relative to others, meaning that they have

greater or lesser in�uence as the algorithm unfolds. he weights of the connections

(the Σ values) control the distribution of precision weighting over the ANN’s error

units.

he physical implementation of precision weighting is one of themore open-ended

and less well-understood areas of predictive coding. Naively, onemight assume that

the physical resources that implement precisionweightingwould be similar to those

that implement the generativemodel. At the algorithmic level, both correspond to

the same sort of abstract feature – weighted connections between ANN units (the

weights of which are speciûed by thematrices Σ andW respectively). In Section

3, we saw that the weighted connections speciûed byW are implemented by the

strength of synaptic projections that ascend and descend between cortical areas. One

might guess that the Σ connectionswould be implemented similarly, for example, by

the strength of lateral synaptic connections inside cortical areas between whichever

neural subpopulations implement individual ANN error units.²6

his may be part of how precisionweighting is implemented in the brain. Aspects of

precision weighting that are relatively slow to change or that change during learning

may be encoded in lateral synaptic projections that allow one neural population to

inhibit another. But the assumption that synaptic connectivity would be the only
way in which precision weighting is implemented would not ût with the idea that

²4Bastos et al. (2012) explore how some, but by no means all, of the ûne-grained details of cortical

physiologymight ût with an account of the implementation of predictive coding.

²5Sprevak (forthcoming[b]), Section 2.4.

²6For example, see Bogacz (2017), p. 201.
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the brain’s precision weighting sometimes changes dramatically and over short time

periods. Predictive coding claims that changes in the agent’s attention or in their

degree of uncertainty about certain hidden environmental variables depends on

shi�s in the brain’s distribution of precision weighting over its sensory prediction

errors. Such changes may occur on amillisecond timescale –much faster than the

kinds of change normally associated with long-term synaptic plasticity or learning

(assumed to govern W).²7

Friston proposes two distinct (and likely interrelated) mechanisms as candidates

for processes that implement fast changes to precision weighting:

So how is precision encoded in the brain? In predictive coding, preci-

sion modulates the amplitude of prediction errors . . . his means that

precision corresponds to the synaptic gain of prediction error units.

he most obvious candidates for controlling gain (and implicitly en-

coding precision) are classical neuromodulators like dopamine and

acetylcholine, which provides a nice link to theories of attention and

uncertainty. Another candidate is fast synchronized presynaptic in-

put that lowers eòective postsynapticmembrane time constants and

increases synchronous gain. his ûts comfortably with the correlation

theory and speaks to recent ideas about the role of synchronous activity

in mediating attentional gain. (Friston, 2010, p. 132)

Neuromodulators are brain chemicals that have the ability to systematically change

the function of a neuron in their vicinity. Examples of common neuromodulators

include acetylcholine, dopamine, norepinephrine, and serotonin. Acetylcholine

and dopamine are known to havemany eòects on cortical pyramidal neurons: they

can change their intrinsic ûring activity, change their threshold for ûring, suppress

adaptation of ûring, and alter the eõcacy of existing synaptic connections.²8 hese

eòects can occur rapidly – on a timescale ofmilliseconds – certainly much quicker

than the changes associated with long-term synaptic plasticity. Many models of

cognition hypothesise that neuromodulators play a role in cognition, although

their true computational function is unknown.²9 Friston argues that one of the

computational functions of acetylcholine and dopamine is to selectively boost or

suppress ûring in the neural subpopulations that implement error units, and thus

to implement precision weighting of prediction error.

Friston observes that this would create a connection between predictive coding and

existing theories of attention and uncertainty. hese theories already suggest that

²7Friston (2009); Clark (2016), pp. 146–150.

²8Hasselmo (1995).

²9For examples of various proposals, Doya (2002); Fellous and Linster (1998); Montague,Hyman

and Cohen (2004).
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acetylcholine and dopamine are associated with controlling attention and tracking

uncertainty.³0 hat connection is somewhat complicated by the fact that those the-

ories also tend to employ rival algorithmic-level models that do not fully agree with

predictive coding on the details of the computational role that neuromodulators

play. For example, the literature on rewarded-guided decision making under uncer-

tainty interprets neural activity that is modulated by dopamine as encoding reward
prediction error. According to Friston, it encodes the precision of sensory prediction
error. Both proposals associate dopamine with ameasure of uncertainty (broadly

construed), but they disagree about the details of its computational function.³¹

he second physical mechanism that Friston proposes to implement precision

weighting is fast synchronised ûring. Neural spikes that arrive at the same time

(‘fast synchronized presynaptic input’) tend to have a greater eòect on downstream

neurons than the same inputs would if they were to have occurred in a temporally

disordered way. Synchronisation appears to ‘up the gain’ on a neural signal.³². One

might imagine the eòect as similar to that of a group of people pushing a heavy ob-

ject in an uncoordinated fashion versus timing their pushes to move it in several big

heaves. Synchronised ûring in the brain can start and stop suddenly and can modu-

late the gain on neural responses over a timescale ofmilliseconds. Synchronisation

may occur across a variety of ûring-frequency bands, and some neural populations

respondmore to signals that are synchronised at some frequencies than others.³³ As

with neuromodulator release, the true computational function of synchronisation

is unknown and the object of much speculation. Like neuromodulator release,

synchronised ûring is known to have profound eòects on cortical neurons. It is

also correlated with changes in attention: attentional shi�s tend to be associated

with changes in (fast) gamma-band (30–90 Hz) synchronised ûring in superûcial

cortical neurons.³4

Bastos et al. (2012) suggest that superûcial pyramidal cells – which are claimed

to implement ANN error units – are preferentially tuned to synchronisation at

³0See Schultz, Dayan andMontague (1997); Schultz (1998) on the role of dopamine in encoding re-

ward uncertainty; Berridge (2007) on dopamine and salience; SeeHerrero et al. (2008); Klinkenberg,

Sambeth and Blokland (2011) on acetylcholine and attention.

³¹See Friston (2009), p. 299 for discussion of whether dopamine encodes the ‘prediction error on

value’ – a prediction error about reward – as proposed onmodels of reward-guided decision-making

that use a temporal-diòerence computational model; or, the ‘value of prediction error’ – how much

the brain weights a sensory prediction error in its deliberations – as proposed on his predictive

coding model (Feldman and Friston, 2010; Friston, Daunizeau and Kiebel, 2009; Schwartenbeck

et al., 2015). Friston claims that his approach better explains the observed experimental results

regarding dopaminergic activity.

³²Salinas and Sejnowski (2001); Chawla, Lumer and Friston (1999).

³³Engel, Fries and Singer (2001).

³4Fries et al. (2001); Womelsdorf and Fries (2006).
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gamma-band frequencies (30–90 Hz), whereas deep pyramidal cells – which imple-

ment prediction units – are tuned to synchronisation in the slower alpha and beta

ranges (<30Hz). Gamma-band synchronisation is claimed to selectively increase

the responsiveness of the cortical error units (boost their neural subpopulation’s

response) without aòecting (amplifying or dampening) the response of cortical

prediction units which are tuned to signals at lower frequencies. here is empirical

data to support the idea that superûcial and deep cortical pyramidal cells are diòer-

entially tuned to respond to inputs synchronised at higher and lower frequencies

respectively.³5 here is also evidence that ‘forward’ connections in the cortical hier-

archy (originating from superûcial layers and carrying error signals) and ‘backward’

connections (originating from deep layers and carrying predictions) tend to carry

signals with higher and lower frequencies respectively.³6

he two proposedmechanisms for implementing precision weighting – neuromod-

ulator release and gamma-band synchronisation – are likely to interact with each

other. Release of acetylcholine, for example, appears to elicit greater gamma-band

oscillations.³7 he exact nature of their interaction is unknown, although onemight

expect that their respective eòects dominate over diòerent (albeit overlapping)

timescales – the changes in cortical neuron behaviour due to neuromodulator re-

lease are generally slower to take eòect and less quick to disappear than those for

gamma-band synchronisation.

he neocortical claim should be understood as proposing that neuromodulator

release and gamma-band synchronisation are among the physical resources that

implement precision weighting. It does not entail that they exhaust the neural basis

of precision weighting. heremay be other physical mechanisms that selectively

boost and inhibit the relevant neural subpopulations to implement precisionweight-

ing. Indeed, an unlimited number of physical mechanisms, operating on diòerent

timescales and interlaced in complicated ways,may jointly function as the physical

basis of precision weighting in the brain. One should not assume that a simple

account of the physical implementation of precision weighting will emerge from

the neocortical proposal:

hus while the notion of sculpting patterns of eòective connectivity by

means of ‘precision-weighted prediction error’ is simple enough, the

³5Buòalo et al. (2011).

³6See Bosman et al. (2012). Gamma-band synchronisation is also proposed as the brain’s way of

solving the ‘binding problem’ – how representations in distant parts of the cortex get bound together

into a single percept (Engel, Fries and Singer, 2001; Engel and Singer, 2001; Singer, 1999). It is not

clear how the proposed ‘long-range’ synchronisation between distant neural populations for binding

ûts with predictive coding’s proposal about ‘short-range’ synchronisation between subpopulations

of error units inside a single cortical area.

³7Buhl, Tamás and Fisahn (1998); Börgers, Epstein and Kopell (2005).

16



[physical]mechanisms that implement such eòects may bemultiple

and complex, and they may interact in important but as yet under-

appreciated ways. (Clark, 2016, p. 149)

6 Beyond the neocortical proposal

Onemight wonder about whether the neocortical proposal is the full story about

the implementation of predictive coding. Do non-cortical brain regions implement

aspects of the algorithm? Do physical resources outside the brain – parts of the

agent’s non-neural body or technological resources in the environment – implement

elements of the algorithm? It is not unusual for predictive coders to suggest that the

neocortical proposal only describes one part of the implementation of predictive

coding. Resources that lie outside the neocortex or outside the brain may also

contribute to the algorithm.

hemotivation for going beyond the neocortical proposal comes partly fromwithin

the neocortical proposal itself. In the previous section, we saw that the neocortical

proposal suggests that diverse physical processes in the brain implement precision

weighting. hese processes might include neuromodulator release, gamma-band

synchronisation, some combination of the two, and other mechanisms as well.

While the exact mixture of physical resources that implement precision weighting

is uncertain, the general idea is that a single formal element of the ANN need not

be implemented by a single physical type of resource.

A similar point could be made about what the neocortical proposal says for the

implementation of the generativemodel. he neocortical proposal claims that the

generativemodel (theW matrix) is implemented by eòective synaptic connectivity
between cortical areas.³8 However, the term ‘eòective synaptic connectivity’ does

not name a single biological property. It rather denotes a functional relationship con-

cerning how activity in one neural population tends to in�uence activity in another.

his relationship could be physically realised in any number of speciûc biological

changes in themolecular make-up of synaptic junctions, in the post-synaptic cell, in

the pre-synaptic cell, or in the biochemical environment surrounding a synapse. he

neocortical proposal is silent about how eòective synaptic connectivity is achieved

in the brain; it only requires that some physical change takes place such that ûring

activity in one neural population has a greater/lesser chance of causing ûring in

the second population. Like with precision weighting, the neocortical proposal

allows for the possibility that diverse physical resources physically implement the

generativemodel (theW matrix).

³8Friston (2011b), p. 14.
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Taking this idea further, onemight wonder whether the physical relationships that

realise, for example, eòective synaptic connectivity need to be restricted to those

in the immediate vicinity of the synapse. In principle, the W weights could be

encoded by whatever physical features systematically change the eòective synaptic

connectivity between neural populations. On this reading, all manner of physical

characteristics in the brain, body, and environment could qualify as ‘part’ of the

physical implementation of the generativemodel. Gross anatomical features of the

brain (e.g. diòerent degrees ofmyelination), the spatial distances between cortical

areas (such that closer areas aremore likely to in�uence each other by spreading

activation), the physical constraints on the speed of transmission of neural depolar-

isations, diòering levels ofmetabolic support aòorded to neural cells by non-neural

cells – all of these can, in principle, change eòective synaptic connectivity and thus

could be claimed as part of the implementation of the generativemodel:

. . . our basic evolved structure (grossneuroanatomy, bodilymorphology,

etc.) may itself be regarded as a particularly concrete set of inbuilt

(embodied) biases that form part of our overall ‘model’ of the world

(Clark, 2016, p. 175)

he same sort of reasoning applies to the implementation of the ANN connection

weights associated with precision weighting (the Σ matrix). here is no reason why

only physical processes that take place in or around the neural populations that

implement error units (such as neuromodulator release, gamma synchronisation in

presynaptic input) should implement precisionweighting. In principle, any physical

process that systematically changes the gain of the relevant neural subpopulations

is a candidate for an implementation of precision weighting. Kanai et al. (2015)

explore how subcortical neural activity – responses in the pulvinar nuclei in the

thalamus – systematically changes the ûring of populations of superûcial pyramidal

neurons via corticothalamic loops and hence changes the response of error units.

Activity in these loops is already known to correlatewith changes in attention. Clark

(2016) proposes that external physical resources – mechanisms that lie entirely

outside the brain –might perform a similar function. He claims that a key feature of

human cognition is that it exploits non-neural bodily and environmental resources

to systematically change the weighting of the brain’s sensory prediction errors:

external symbols and public language conjure up ‘artiûcial contexts’ that boost the

weight of some sensory prediction errors (pp. 282–284),³9 our cultural practices and

social institutions lend certain sensory prediction errors extra importance (pp. 275–

279), and our reliance on technology such as laptops and smartphones directs our

brain to correct for certain sensory prediction errors in preference to others as well

as making certain aspects of the incoming sensory stream more (and occasionally

³9See also Lupyan and Clark (2015).
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less) predictable (pp. 260–262).40

It is worth considering that theremight be a dynamic element to all this too. he

precisemixture of physical resources that implement any given formal element of the

algorithm (e.g. a speciûcWweight) could conceivably change over time. In principle,

thismight allow formore eõcient utilisation ofwhatever physical resources – neural,

bodily, and environmental – happen to be available to the cognitive system at that

moment. An analogy might be drawn with ‘cloud computing’ paradigms on the

Internet. In cloud computing,multiple physical devices are scattered around the

world and activity across their various physical components implements a single

distributed computation. he exact mix of physical resources inside these devices

that implement the computation may change over time to suit the demands of the

task and which physical resources happen to be free. Despite these variations in its

physical basis, which may occurwhile the computation is running, the computation

can proceed smoothly so long as at each moment each physical part plays the

appropriate role and interacts with its fellows in the right way. In a similar fashion,

our cognitive system might employ diòerent physical resources at diòerent times to

implement formal features of the algorithm, rebalancing themixture of physical

resources across the brain, body, and environment based on current demands

and availability.4¹ his suggests that the full story of predictive coding’s physical

implementation may be extremely complex and hard to fathom. A simple Rosetta-

stone-style description of predictive coding’s implementation – that says that this
formal element of the ANN is always implemented by this neural response –might

be unrealistic. he physical implementation of predictive coding may instead be an

idiosyncraticmatter that varies depending on an individual’s speciûc circumstances

and available physical resources.

7 Using implementation to explain anomalies

he possibilities discussed in the previous section introduce new degrees of free-

dom into predictive coding’s overall model of cognition. In this section, I will

consider how this might allow predictive coding to accommodate behavioural

or psychological phenomena that might otherwise appear puzzling or as poten-

tial counterexamples to its algorithmic or computational claims. he freedom in

question concerns possible variations in the hardware that implements formally

indistinguishable elements of the computation. Diòerent physical resources that

40See also Clark (2017).

4¹See Clark (2016) on ‘transient assemblies’ of neural and environmental resources in cognition

(pp. 150–151, 256–260). For more on how the physical states that implement a cognitive computation

may shi� depending on task demands, see the hypothesis of ‘cognitive impartiality’ in Clark (2007);

Clark (2008), Ch. 6; and studies by Weis andWiese (2019).
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play exactly the same formal role in the computation may havemarkedly diòerent

physical characteristics. hese physical characteristics can result in the cognitive

system producing responses that depart from what onemight expect if one were

to assume that every physical component behaved in exactly the same way in all

respects and that the only properties that matter to cognition are those that al-

gorithmic or computational levels describe. An advocate of predictive coding may

point to these implementation-level diòerences – variations in the domain of physical

hardware – to explain anomalies with respect to what onemight expect from the

algorithmic or computational level accounts.

Two respects in which physical resources that implement the same formal element

are likely to vary are how much they can change during the algorithm, and how

rapidly they can change. In the idealised world of predictive coding’s mathematical

algorithm, formal elements like ANN connection weights were assumed to be

capable of an unlimited amount of change (in principle, they can take any real-

valued number), and each connection weight is assumed to change at the same rate

(during the operation of the learning algorithm). In the concrete implementation

of the algorithm in the brain, this may not be true. Some physical resources that

implement ANN connection weights – whether they are speciûc parameters of

the generativemodel or precision weightings over error units –may be harder or

slower to change than others. Somemight correspond to relatively ûxed features of

bodily morphology that are not open to revision during learning. hese diòerences

among the physical resources that implement formally indistinguishable elements

may account for why a cognitive system might ûnd it harder to change, say, certain

parameters of its generativemodel.

One way to illustrate the point is to revisit the analogy with cloud computing. In

such a computation, diòerent physical devices distributed across the Internet may

be treated as formally identical (as indistinguishable ‘processing’ or ‘memory’ units),

but somemay run faster than others. Some processing units (physical CPUs, GPUs)

may have a faster clock speed or access to higher bandwidth channels; some physical

memory units (RAM, solid-state devices, hard disks,magnetic tape) may be slower

to respond or more stable over time. hese implementation-level diòerences may be

deliberately ignored at the level of the speciûcation of the algorithm: all that matters

to the algorithm is that certain operations take place in a timely enough fashion

to not throw oò the next step in the algorithm. Consistent with this however,may

be variation in how the algorithm is physically implemented. Onemight need to

appeal to these diòerences at the implementation level to explain patterns in the

real-world behaviour of the system. So called ‘implementational details’ can have

highly tangible eòects. It may matter a great deal to me if, while waiting for an

important message, I suòer a delay in receiving my emails, even though what is

responsible for the delay is not somemalfunction of the retrieval algorithm, but that
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the relevant subroutine happens to be implemented on that occasion on slightly

slower or less responsive hardware.

Appeal to variations at the implementation level can help to explain a range of

behavioural and psychological anomalies for predictive coding. One source of

such anomalies is perceptual illusion. Perceptual illusions are cases in which our

cognitive system fails to minimise a sensory prediction error and continues to fail

to do so apparently regardless of how well evidenced the error is (or how heavily the

cognitive system attempts to weight it). An inability to make a sensory prediction

error ‘go away’ by the usual means is what makes perceptual illusions robust, stable,

reproducible phenomena. In theMüller–Lyer illusion, two straight lines of equal

length are estimated to be of diòerent lengths. his is re�ected both in our conscious

experience of the lines and the subpersonal estimates and responses generated by

our brain.4² No matter how many times one sees the lines, no matter how much

one knows about how the illusion works, no matter how many times one might

measure the lines with a ruler and verify their length, no matter how one distributes

one’s spatial attention over the lines, and no matter how high the stakes for the

cognitive system to correct for that error, one’s perceptual system still seems biased

to represent them as diòerent lengths. In the limit, onemight bemorally certain –
willing to bet one’s life and the lives of all one’s descendants – on the proposition that

the lines are the same length, yet one’s perceptual system still seems to stubbornly

represent them as diòerent lengths. Additional evidence, background knowledge,

shi�s in attention, and so on can aòect the strength of theMüller–Lyer illusion.4³

But these factors are not enough to make the illusion disappear, as they would in a

normal case ofmisperception, or to bring about veridical perception of the lines.

What is signiûcant here is not that a false sensory prediction occurs, but that the

cognitive system seems oddly unable to correct that error. What theMüller–Lyer

illusion appears to show is that certain assumptions that make up our generative

model are to a certain degree in�exible, or at least remarkably resistant to revision.

Prima facie, this does not ût with what predictive coding says at the algorithmic

level (or with its claim about perception being a form of Bayesian inference). An

appropriate sequence of weighted prediction errors should in principle be able to

update the ANN to stop making a false sensory prediction, even if the cost might

be to change the generativemodel in ways that would cause it to start making false

predictions about other cases. here is nothing in predictive coding’s algorithm

to suggest that an appropriate stream of prediction errors would be incapable of

changing the prediction values or revising parameters of the generativemodel. But

we – at least, adult humans – cannot seem to make this happen. An input stream of

4²Bruno and Franz (2009); Tudusciuc and Nieder (2010); Weidner and Fink (2007).

4³See Qiu et al. (2008); Weidner and Fink (2007).
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relevant, weighted prediction errors seems powerless to revise themodel.

he stubborn nature of these sensory prediction errors only presents a puzzle,

however, if one assumes the idealised, inûnitely �exiblemodel of predictive coding’s

algorithm. In the abstract world of the mathematical algorithm, every element

of the generative model can be revised arbitrarily far in light of incoming data.

If one complicates the model by noting that the ANN is implemented in ûnite

physical resources that may have diòerent physical characteristics and be more

or less amenable to change, then the observed lack of �exibility in the generative

model becomes less surprising. Indeed, given the constrained and ûnite nature of

any physical implementation, one should expect that a real-world implementation

of the generative model (and precision weighting) would not have the kind of

�exibility possessed by the abstract model. Moreover if one assumes, as suggested in

the previous section, that the physical implementation of predictive coding consists

in amix of diòerent physical elements, one should expect that diòerent aspects of

the generativemodel to have diòerent constraints imposed by their physical nature

on how easily and how far they can be modiûed. Certain parameters inside the

generativemodel may correspond to synaptic connections that are open to change

(albeit to a ûnite degree) by learning; others may correspond to gross anatomical

features that cannot bemodiûed a�er development. Explanation of the persistence of

errors in theMüller–Lyer illusion may thus be pushed down to the implementation

level. he behavioural and psychological proûle we observe – that certain sensory

prediction errors associated with the illusion seem incapable of being minimised –

is explained, not in terms of some characteristic of the formal algorithm, but as a

consequence of the speciûc physical implementation of the algorithm in a complex

and variedmix of physical resources.44

Lupyan (2015), Clark (2016, pp. 199–201), and Hohwy (2013, p. 141) also discuss

the Müller–Lyer illusion, but they have a slightly diòerent issue in mind. heir

aim to explain why any false sensory prediction occurs at all. hey suggest that

the false prediction is generated by assumptions that allow the cognitive system to

generate numerous true sensory predictions in the context of three-dimensional

scenes (see proposals by Gregory, 1963; Howe and Purves, 2005). hey argue that

the prediction errors observed in theMüller–Lyer illusion case are suõciently rare

in realistic ecological settings that any failure to minimise them does not con�ict

with the assumption that the brain’s overall goal is to minimise long-term sensory

prediction error. In other words, the false prediction that the lines are diòerent

lengths should be understood as a ‘short-term’ or ‘local’ error of the kind discussed

in Sprevak (forthcoming[a]), Section 5. However, even if this is correct, it would

44See Yon, de Lange and Press (2019) for examples of physical features in the brain that might

explain what they call ‘evidence-resistant’ predictions.
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not explain why it is hard to change the relevant assumption when errors do start

coming in. his resistance to revision is what the algorithm fails to explain. What

is proposed above is that it should be explained at the implementation level: the

hardware that encodes the assumption that Lupyan et al. describe is less open to

change than others. In line with what they suggest, the relevant hardware perhaps

does not need to change in normal ecological settings – past evolutionary forcesmay

have calciûed the assumption by encoding it in relatively ûxed physical resources.

Kirchhoò and Kiverstein (2019, pp. 88–90) argue that the persistence of theMüller–

Lyer illusion should be explained in terms of the distribution of precision weighting.

hey claim that the prediction errors associated with the illusion are systematically

assigned a low precision weighting, and so they are less likely to be revised: i.e. low

precision weighting explains why the illusion persists. his might be a literally

correct description of the situation, but it raises the question of why the precision

weightings are set this low and why it is so diõcult to change them. he weightings

do not appear to change, or at least not enough to eliminate the error, in response

to considerations that in other contexts would be suõcient to radically shi� them:

e.g. certainty that a prediction error has been made, shi�s in attention, changes in

reward. If the prediction error associated with the illusion is being discounted by

the algorithm via precision weightings, it being discounted in a puzzlingly in�exible

way. he algorithm provides no explanation for this: in principle, all lateral and

intrinsic connections between ANN error units are as malleable as each other. One

seems to be thrown back on the idea that theremay be physical diòerences in how

precisionweighting is physically implemented in the brain that these are responsible

for the observed diòerences in the illusion case. In other words, a return to the

same basic strategy sketched in this section: explain the persistence of the illusion

by appeal to diòerences among the physical resources that implement the formal

model.

8 Constraining the empirical content of predictive coding

Introducing these extra degrees of freedom in predictive coding’s model oòers

dangers as well as opportunities. he previous section described some of the ad-

vantages of letting the implementation of predictive coding be complex, diverse,

and open-ended. However, it is easy to slip from this into treating predictive cod-

ing’s physical implementation as completely unconstrained. On such a view, the

implementation of a given element of the formal model (e.g. an ANN connection

weight) on any given occasion could potentially be anything provided it fulûls

the role required of it by the algorithm. No further constraints are placed on the

nature of the physical resource that implements a component of the ANN. If one’s

assumptions about the physical implementation of predictive coding are this liberal,
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then potentially any sequence of physical states that a biological system undergoes

over time could be mapped to some sequence of features of the ANN. In eòect,

whatever an organism happens to do on any given occasion could be treated as the

implementation of some appropriate element of the formal model, and hence as an

instance of predictive coding.

Such thinking can lead one to very strange places, as Clark and Friston describe:

We are built to breathe air through our lungs, hence we embody a kind

of structural ‘expectation’ of staying (mostly) abovewater – unlike (say)

an octopus. Some of our action tendencies are likewise built-in. he

re�exive response to touching a hot plate is to draw away. his re�ex

amounts to a kind of bedrock ‘expectation’ of avoiding tissue damage.

In this attenuated sense every embodied agent (even a bacterium) is,

just as Friston (2012) claims, already a kind of surprise-minimizing

model of its environment. (Clark, 2016, p. 263)

. . . each organism represents a hypothesis or model that contains a

diòerent set of prior expectations about the environment it inhabits

(Friston, 2011a, p. 90)

It is hard to see how these claims could be empirically tested. Whatever the system

happens to do, it is treated as engaged in ‘prediction’ about sensory input. Any

physical resource that it happens to employ on any occasion (including the resource

of having lungs) ismapped onto it having an appropriate assumption in its generative

model. No matter what physical behaviour is observed, that behaviour is treated,

in that context, as an implementation of some or other aspect of the formal model.

In short, the physical implementation of the ANN consists in whatever physical
resources that the system happens to deploy on any given occasion.

Our computational claims about physical systems in science and engineering are not

normally like this. When we say that our electronic PCs implement an algorithm,

what we mean is that a small number of speciûc electrical circuits inside the PC
implement that algorithm. We can empirically verify this claim – we can check

whether the PC is running that algorithm – by examining the pattern of physical

activity inside those circuits. If we discover that the pattern of physical activity

in those circuits does not conform to the algorithm, then we would say that the

device does not implement the algorithm; if we discover that it does conform to

the algorithm, we would say that it does implement the algorithm. However, if one

were to permit that any physical activity in and around the device could implement

any aspect of the algorithm at any given moment, then one would not be able to

conduct such tests. here would be no speciûc empirical content associated with

the claim that the device implements the algorithm. Checking the electrical activity
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would be littlemore than a pantomime, not ameaningful test of implementation.

For if the electrical activity were not to conform to the algorithm, it would still be

consistentwith any number of other patterns of activity, perhaps highly idiosyncratic

and context-dependent ones, implementing the algorithm. If one refuses to place

any limitations at all on which physical resources do and do not implement the

algorithm, it is hard to see how the algorithmic-level proposal could be subject to

empirical constraints. Any observed sequence of physical states could, in principle,

be treated as consistent with the formal model, for any sequence of physical states

could be treated as implementing the relevant aspect of the prediction-generating

machinery on that particular occasion.

Clark suggests that we should pull back from an unconstrained approach to predict-

ive coding’s implementation and distinguish between physical states that properly
implement the algorithm and those that merely could, in some attenuated sense, be

mapped onto elements of the formal model:

Ifmy skin heals a�er a cut, it would bemisleading to say that in some

structural, embodied fashion I ‘predict’ an unbroken membrane. Yet it

is only in this strained sense that, to take another example, the shape of

the ûsh could be said to embody expectations concerning the hydro-

dynamics of seawater. Perhapswe should allow that in some very broad

sense, ûsh-y ‘surprisal’ is indeed partially determined by such mor-

phological factors. Our focus, however, has been on suites of entwined
predictions issued by a neurally encoded generative model – the kind

of process implemented, if [predictive coding] is correct, by iterated

exchanges of prediction and prediction error signaling in asymmet-

rical bidirectional cascades of neuronal processing. Consequently, I

do not think we ought properly (without scare quotes) to speak of all

these bedrock adaptive states and responses as themselves amounting

to structurally sedimented (Friston says ‘embodied’) predictions or

expectations. (Clark, 2016, p. 264–265, emphasis mine)

his raises the question of on what basis we should draw the distinction between

physical resources that ‘properly’ implement the algorithm and those that merely

implement it in scare quotes. Clark suggests that we do this in terms of resources

that ‘set the scene’ for the prediction-error minimisation process versus those that

‘more explicit[ly]’ run the algorithm (ibid.). But that distinction itself seems hazy

and with a questionable empirical basis. Physical resources that count as ‘setting the

scene’ for some investigators may be classiûed as ‘principal players’ by others, and

vice versa. he resources in question both fulûl the formal role required of them by

the algorithm. Who is to say which are the principal players and which are not? In

the case of the quotation above, why should only the neural/neocortical activity fall
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into the foreground? Clark’s own discussion of the role of external technology in

setting precision weighting tends to blur this distinction – on his view, it is unclear

whether a piece of the external environment should be understood as merely setting

the scene for the assignment of ‘true’ neural precision weighting or whether it itself

sets precision weighting in some extended implementation of the algorithm (Clark,

2016, pp. 260–262). It is simply not obvious how one should distinguish between

physical resources that properly implement the algorithm from those that also play

the role, but only do so to set the scene.45

Of course, one could settle the issue by ûat.46 For example, onemight say that the

‘proper’ implementation of a prediction value, yi , consists, exclusively, in the average

neural ûring rate of a deep layer of pyramidal neurons. No other physical activity in

the brain, body, or environment implements prediction values. Adopting this restric-

tion opens the door to empirical testing. One would be able to look at the state of

deep layer pyramidal neurons to see if they conform to the algorithm’s prescriptions.

But why accept a restriction like this on predictive coding’s implementation? Why

think that only a single type of physical state – or even a small number of physical

state types – correspond to a single formal state in themodel? Attempts to artiûcially

restrict the implementation base quickly run up against the kinds of considerations

raised in Sections 6 and 7 which motivated a liberal, open-ended, unconstrained

approach towards predictive coding’s physical implementation. In general, it is not

obvious how predictive coding should reconcile two opposing forces: (i) permitting

the implementation to be complex, idiosyncratic, and varied in ways that we do not

yet understand; and (ii) imposing some constraints on which physical states do and

do not implement themodel in order to render the view empirically testable.

his brings us back to the dilemma about implementation ûrst described in Sec-

tion 2.1. On the one hand, predictive coding faces pressure to allow the cognitive

system to use an unconstrained set of physical resources in and around the brain

to implement its formal model. he pressure comes not only from observation of

the sheer complexity of the brain and our current uncertainty about which neural

processes are functionally signiûcant to cognition, but also from the reasonable

expectation that the physical implementation of predictive coding is likely to be

extremely complicated and varied. On the other hand, predictive coding faces pres-

sures to ensure that the physical implementation of its formal model is somehow

constrained. Without restrictions on the physical resources that implement the

model, it is impossible to test themodel – to bring evidence about observed physical

activity to bear either for or against themodel. Without constraints, any observation

45Roskies andWood (2017) draw this distinction in terms of physical elements that aremore

‘active’ or ‘passive’ during the prediction process, but the nature of this distinction is again unclear.

46his is arguably how it is done for electronic PCs.
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will be compatible with themodel, as it is compatible with a suitably complicated

and qualiûed story about physical implementation. here is currently no agreement

about how to resolve this dilemma. hat makes empirically testing predictive cod-

ing’s model – outside the context of some artiûcially restricted mapping like the

neocortical proposal – extremely diõcult.

9 Conclusion

Pinning down what predictive coding actually says is hard. he view can take

(sometimes radically) diòerent shapes in diòerent hands. his shi�ing ground is

normal in cutting-edge science, and it is a sensible way for the scientiûc community

to explore the contours of a new view. But it can be frustrating for philosophers. It

is reasonable to wonder what predictive coding really is and is not committed to. In

this series of papers, I have tried to sketch the bare bones of the view. hat sketch is

incomplete in many ways and the research programme is rapidly changing. What

I have said is also likely to be contentious, at least for some advocates of the view.

However,my aim has been only to get the rough shape of the view on the table, and

to convey a sense of its potential attractions and challenges.

In the present paper, I have argued that bringing neural and behavioural evidence

to bear on predictive coding’s research programme requires making non-trivial

assumptions at Marr’s implementation level – about which neural (and perhaps

also extra-neural) properties map to which numerical components of the algorithm.

Only relative to some speciûcmapping can one checkwhether the abstract processes

described actually occur in the physical world and whether they drive behaviour

in the way suggested. I outlined a popular and in�uential theory about predictive

coding’s implementation – the neocortical proposal. his suggests that long-known

anatomical structures in mammalian neocortex implement predictive coding’s

ANN. However, the neocortical proposal is a relatively broad-brush theory at Marr’s

implementation level –many important details regarding theANN’s implementation

are omitted. It is also normally understood as oòering only a partial account of the

implementation of predictive coding. Moving from a broad-brush, partial theory

of predictive coding’s implementation to a full theory – one that would allow for

uncontentious deûnitive conûrmation or disconûrmation of predictive coding’s

claims – remains problematic however, and faces not just empirical challenges but

also conceptual ones.

Predictive coding’s research programme is an alliance of three claims at Marr’s com-

putational, algorithmic, and implementation levels. here is scope for committing

to one of these claims but not others – unbundling the research programme. here

is scope for developing the details of the claims in many diòerent ways – forking the

27



research programme. Finally, there is scope for reigning in how much of cognition

and behaviour the resulting model aims to describe and explain – weakening the

research programme. In a sense, it is purely a semanticmatter which view out of

this constellation one ends up calling ‘predictive coding’. What I have described

here is a version that aims to connect all three claims together tightly, develop them

in a way that aims to be relatively simple at the computational and algorithmic

levels, and tries to cover all (or as much as possible) of cognition and behaviour.

To my mind, this represents the sort of iteration of the view that best expresses

the initial promise to provide a computational model of human cognition that is

comprehensive, unifying, and complete. What we have seen however, that even in

this ideal case what is currently in hand is more of an aspiration than a theory – one

that remains to be articulated in relevant details and securely connected to standard

forms of empirical evidence.
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