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1 Introduction

At Marr’s computational level, predictive coding suggests that the task facing the
brain is tominimise its long-term, precision-weighted sensory prediction error. his
article focuses on the algorithm and representations by which the brain attempts
to accomplish this task – in other words, what predictive coding says at Marr’s
algorithmic level. In principle, a huge range of possible algorithms could be used to
minimise sensory prediction error. Furthermore, nothing has been assumed about
the brain’s success rate in solving this computational problem. here is no commit-
ment within the predictive coding programme to the algorithm for minimising
sensory prediction error being entirely reliable or always guaranteed to solve the
problem in every case. his leaves a very wide ûeld of possible candidates.

Among the algorithms that could conceivably be used to minimise sensory predic-
tion error include various versions of approximate Bayesian inference – sampling-
based techniques such as Monte Carlo simulation as well as the variational Bayesian
methods favoured by advocates of predictive coding. It also includes non-Bayesian
methods that, while not optimal in the respects favoured by Bayesians, are never-
theless capable of producing eòective results in many circumstances. his latter
includes a vast and diverse range of algorithms spanning from simple regression
methods and likelihoodmaximisation to sophisticated forms of reinforcement learn-
ing and supervised learning. Even a large enough look-up table could, in principle,

1

mailto:mark.sprevak@ed.ac.uk


be used to allow the brain to minimise sensory prediction error.¹

Predictive coders tend to have relatively speciûc proposals about how the brain
minimises its sensory prediction errors. Details vary between these proposals –
currently, there is no agreed algorithm for predictive coding – but certain broad
motifs concerning that algorithm tend to be repeated. hese include the idea that
the algorithm should involve: (i) amulti-layered, hierarchically structured artiûcial
neural network; (ii) a repeated duplex arrangement of prediction and error units
within each layer; (iii) each layer functioning so as to minimise prediction error
about the state of the layer below. Some of the formal states of this algorithm may
also be interpreted, in a further semantic step, as probabilistic representations and
the manner in which they are transformed as a version of approximate Bayesian
inference.

hese points will be unpacked in more detail below. In Section 2, I describe how
a single layer of the artiûcial neural network works. In Section 3, I describe how
multiple layers connect to form a larger, hierarchically structured artiûcial neural
network. Section 4 describes how the formal states of the artiûcial neural network
can be given a semantic interpretation that allows the network to be viewed as per-
forming approximate Bayesian inference. Section 5 describes how the algorithm can
be used to model cognitive processes outside perceptual inference and perceptual
learning – for example, motor control. Section 6 provides a brief conclusion and
review.

2 Predictive coding in one layer

Predictive coding’s algorithm involves an artiûcial neural network with multiple
layers. his section focuses on a single layer. For the sake of simplicity, I describe
the bottom-most layer – the one closest to sensory input. he workings of this
layer are also deliberately simpliûed, for ease of exposition. More sophisticated
versions are sketched in Section 2.5. In Section 3, I describe how multiple layers,
each with a structure identical to that described in this section, are composed to
form a hierarchy.²

2.1 he computational task

he computational task of a single layer in predictive coding is assumed to be the
same as that of the entire system: namely, to minimise its sensory prediction error.

¹Maloney and Mamassian (2009) describe how table lookup can produce similar results to
Bayesian inference.

²My account of predictive coding’s algorithm is based on those of Bogacz (2017); Friston (2005);
Rao and Ballard (1999); Spratling (2017).
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Each layer takes its ‘sensory’ input from below. he bottom-most layer takes, as its
input, the signals delivered by the brain’s external sensory organs. he computational
goal of a layer is to converge on (i) a set of prediction values and (ii) a generative
model that, when appropriately combined, reconstruct (i.e. predict) its sensory
input as closely as possible. he algorithm by which the layer does this consists in
two types of stepwise operation that occur on diòerent time scales: (i) updating
the activation values of the artiûcial neural network (‘inference’); (ii) updating the
connection weights of the artiûcial neural network (‘learning’).

Before describing the steps involved in inference and learning in quantitative terms,
it is necessary to ûrst formalise the computational task of a layer.³ For the sake of
simplicity, we will ignore the eòects of both precision-weighting and long-term
averaging of the error. Assume that the task of a layer is tominimise its current sensory
prediction error. How might that problem be characterised in formal, mathematical
terms? We might say that there are m numerical values, x1 to xm, which we label
the ‘sensory inputs’. hese numbers might correspond to the magnitude of physical
activities in the brain’s sensory organs, e.g. the ûring rates of individual sensory
receptors. However, from the point of view of the algorithmic-level description,
the particular details of the physical implementation are intentionally ignored or
bracketed.4 he xi are simply notional values to be estimated or predicted. A layer’s
task is to estimate these xi values (‘sensory input’) as accurately as possible using
another set of numerical values, y1 to yn, (which we will call the ‘prediction values’)
and a matrix of numerical weights, w0,0 to wm,n (which we will call the ‘generative
model’).

Let us call a layer’s estimate of its sensory input, xi , based on its prediction values and
its generative model, its ‘prediction’, ri . In the simplest version of a predictive coding
algorithm, the system will generate these predictions, ri , using a linear generative
model: it estimates the xi using a weighted sum of y j values, where the weight of
each prediction value is determined by the corresponding entry of the generative
model, wi, j. he function of the generative model is to modulate how much the
value of each y j contributes to the estimate of each xi . Formally, a linear model
estimates the xi values in the following way:

r1 = w0,0y0 +w0,1y1 + . . . +w0,nyn
r2 = w1,0y0 +w1,1y1 + . . . +w1,nyn

³See the discussion of formal versus informal computational-level descriptions in Sprevak
(forthcoming[b]), Section 3.

4For proposals about how the x i map onto physical activities in the brain, see Sprevak (forth-
coming[c]), Section 4.

3



⋮
rm = wm,0y0 +wm,1y1 + . . . +wm,nyn

Or, in vector notation, r =Wy, where r is the layer’s prediction,W is the generative
model, and y are the prediction values that, when combined with elements ofW,
generate the prediction.5 he computational task of a single layer is thus to ûnd
y andW values that produce an r that matches the actual input, x, as closely as
possible.

he measure of by how much a layer misses its goal is the ‘sensory prediction error’,
e = x − r.6 Sensory prediction error, e, is an m-dimensional vector. he task of the
layer is to minimise this vector. In order to do this, one needs a measure of ‘how
much’ prediction error there is in e. Typically, this ûgure is assumed to be the sum
of the squares of the values in e. A layer’s computational task is, therefore, to ûnd y
andW that minimise the sum of the squares of the prediction errors over its sensory
inputs, i.e. ûnd y andW that, when combined to produce a prediction, r, minimise
∑i
(xi − ri)2.7

2.2 he inference algorithm

So far, we have only described a layer’s computational task. We have not said how a
layer should go about ûnding a combination of y andW that minimises its sensory
prediction error. What would such an algorithm look like?

Generally speaking, an algorithm is a series of simple, rule-governed steps that can,
in principle, be mechanised. An algorithm for solving the task is shown in Figure
1. he algorithm does not take the form of a �owchart or a sequence of explicit
instructions (e.g. ‘if A, then B’). Instead, it takes the form of an artiûcial neural
network (ANN). he ANN has ‘error’ units (e1 to em) and ‘prediction’ units (y1 to
yn). he prediction and error units are linked by a series of excitatory and inhibitory
‘connections’. he numerical ‘activation level’ associated with each unit in the ANN
is the value of the variable of the same name, ei or y j. he ‘strength’ associated with
each connection between the units is the weight of the corresponding element, wi, j,
of thematrixW. he excitatory and inhibitory connections of the ANN are arranged
so as to be of equal and opposite weight: the excitatory connection between ei and
y j of weight wi, j, is paired by an inhibitory connection between them, running in

5he y values are sometimes called ‘coeõcients’ of the model.
6he e vector is also known as the ‘residual error’.
7his is equivalent to optimising for minimal mean-squared error,∑i(x i − r i)

2
/m, see Sprevak

(forthcoming[a]), Section 4.
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the opposite direction, of weight −wi, j.8

Figure 1: A single layer in predictive coding (diagram adapted from Spratling, 2017,
p. 95; Harpur, 1997, p. 44)

Unlike real neurons, the outputs of the individual units of the ANN in a linear
predictive coding model are assumed to be a linear function of their inputs. heir
numerical activation level is the sum of their connected inputs weighted by the
connection strength for that input, y j = ∑i

wi, jei .9 his rule, called the ‘activation
function’, speciûes how the activation level of a unit depends on the activation levels
of its incoming connected units and the weights of those connections.¹0

When the algorithm runs, the sequence of addition and multiplication operations
speciûed by the activation function are applied in turn to every unit of the network
(yi and ei) to update its activation level, and then the entire process is repeated. Over
time, the yi and ei values will progressively change. he yi values may eventually
settle into a stable set of numbers or they may cycle between diòerent sets of numbers.
It is possible to prove that if an ANN with the aforementioned activation function
and topology is run on some ûxed input x, the activation level of the y units in

8For an introduction to artiûcial neural networks, see Bechtel and Abrahamsen (2002); Clark
(2014), Ch. 4.

9Real neurons are highly non-linear. hey change their response proûle to issue a spike if input
activation breaches a certain threshold. his is followed by a refractory period when they yield little
or no output irrespective of their input.

¹0Error units are governed by an activation function of the same kind, i.e. e i = ∑ j −w i , j y j .
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the network will tend to converge on values that accomplish the task described in
Section 2.1. In other words, the activation values of the y units will gradually vary
– in a way that is wholly determined by the activation function and the structure
of the network – towards a new set of values that tend to minimise the prediction
error (i.e. that minimise the sum of the squares of the components of e).¹¹ If the
x input values subsequently change – i.e. if the sensory input changes – then the
prediction values y will change too in an eòort to keep up.

If the steps of the algorithm that governs the ANN were unfolded and written out as
a list of individual instructions, we would see that what is described here is really just
shorthand for a very long sequence of elementary numerical operations – repeated
additions and multiplications that progressively modify the ei and y j values – to
converge on the y that will minimise the sum of the squares of the e values for a given
x andW. An ANN with all its units and connections is no more than a statement
of a series of additions and multiplications that should be applied in response to –
or, given that the ANN commences with certain y values, in anticipation of – any
input.

2.3 he learning algorithm

ANNs can run in two modes: inference or learning. What has been described so far
is the network running in inference mode. In inference mode, connection weights,
W, are assumed to be ûxed and the y activation levels are varied – by repeated
application of the activation function – to minimise the prediction error. In learning
mode, x inputs and y prediction values are assumed to be ûxed, and the connection
weights,W, are varied – by repeated application of a ‘learning rule’ – to minimise
the prediction error over those x and y values. When engaged in inference, the
computational system varies its prediction values (y) to try to make its prediction
(Wy) approximate the actual sensory input x. When engaged in learning, the system
varies its generative model (W) to try to make its prediction (Wy) approximate the
sensory input x. Advocates of predictive coding are generally keen to stress that for
both inference and learning the computational task is the same: namely, tominimise
sensory prediction error.¹²

An ANN cannot run in both inference and learning modes at the same time. At-
tempting to simultaneously vary both y andW to minimise prediction error would
turn the error-minimisation task into an ill-posed problem. If an ANN is searching
for y values using the rules described in Section 2.2, some set of weights W need to
be assumed; if it is searching for W values to minimise its prediction errors, some

¹¹See Harpur (1997), Section 4.2. he proof involves showing that the described ANN would
perform a version of minimisation by gradient descent on the prediction-error value.

¹²For example, see Friston (2005), pp. 815, 821.
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set of x and y values need to be assumed. If neither factor is held ûxed, the system
would not know whether or by how much to change its prediction values, y, or its
predictive model,W, in response to a prediction error.

Advocates of predictive coding deal with this problem by assuming that the ANN
performs inference and learning on diòerent timescales. Over ‘short’ timescales
(assumed to be of the order of hundreds of milliseconds for the brain), the ANN
runs in inference mode, settling into the y values that minimise prediction error
for some given x and W. Over ‘long’ timescales (assumed to be of the order of
seconds, minutes, days, or years for the brain), many x, y values are assumed and a
W (generative model) is sought that minimises prediction error over those pairs.
If one sets aside any assumptions about physical implementation and considers
what is being proposed only within the idealised world of numerical algorithms, the
idea is that the learning rule should be applied to a network’s connection weights
once its prediction values y have settled into a relatively stable state a�er one or
more episodes of inference have run to completion for a given set of x values. It is
assumed that episodes of inference will in general complete comparatively quickly,
and that updating of connection weights (learning) can occur in the pauses between
inference.

Predictive coding proposes that the network uses a Hebbian learning rule. his
speciûes that, at each computational step during learning, the ANN should change
a connection’s weight in proportion to the current activation levels of the two units
that it connects. he rule provides a step-by-step mathematical procedure by which
to change connection weights, δwi, j = ηei y j, where δwi, j is how much a connection
weight wi, j should change each step, ei and yi are the activation levels of the error
and prediction units linked by the connection, and η is a constant value that sets
how rapidly connection weights change during learning (the ‘learning rate’ for the
network). It is possible to show that if a Hebbian learning rule is applied to an ANN
shown in Figure 1, the network will tend to converge on connection weights W that
minimise prediction error over its past inputs and predictions.¹³ Hebbian learning
represents a diòerent approach to learning to the ‘backpropagation’ rules that are
currently popular in the AI community and which are utilised to great success by
deep learning systems (LeCun, Bengio and Hinton, 2015). A Hebbian learning rule
is regarded as attractive in this context because it makes learning depend only on
local interactions between units, which is regarded as a more realistic model of the

¹³See Harpur (1997), Section 4.7. he proof again involves showing the ANN would perform a
version of gradient descent on its prediction-error value – this time gradient descent over the space
of possible connection weights, rather than over the space of possible activation values.
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forms of plasticity found in the brain (Bogacz, 2017, p. 199).¹4

As with the activation function that governs inference, the Hebbian rule that governs
learning should be viewed as a series of elementary mathematical steps. It reduces
learning to a long sequence of numerical operations. Learning for predictive coding
consists – at least at the algorithmic level – in a series of additions andmultiplications
on the elements ofW. It is worth noting that inference and learning do not reduce
to exactly the same computational task on this model. he sensory prediction errors
minimised during inference are the current sensory prediction errors. he sensory
prediction errors minimised during learning are past sensory prediction errors
averaged over past inputs and their associated prediction values. Neither quantity
maps in any obvious way onto the not-fully-articulated, prospective measure of long-
term sensory prediction error favoured by predictive coding atMarr’s computational
level (see Sprevak, forthcoming[b], Section 5).

2.4 Precision weighting

Figure 2: A single layer with inhibitory connections to allow precision weighting of
the error signals.

In the current model, each error unit ei has as much in�uence as any other during
both inference and learning. here is no precision weighting of prediction errors.

¹4Backpropagation rules are commonly used to train systems in supervised learning; Hebbian
learning rules are generally seen as better suited to model unsupervised forms of learning (Krotov
and Hopûeld, 2019).
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he standard way to add precision weighting to the model is to modify the ANN
to add lateral and intrinsic inhibitory connections between error units. hese allow
an error unit to inhibit both itself and its peers (Feldman and Friston, 2010, pp.
1–2; Friston, 2005, p. 823). Inter-error connections selectively dampen some error
units, giving them outsize importance relative to their companions. he inhibitory
connections between error units eòectively control the ‘gain’ of each error unit.¹5
Being the target of strong inhibitory connections can turn an error unit down; being
the target of weak inhibitory connections tends to turn an error unit up. he weights
of these new inhibitory connections, Σu,v , are captured by a matrix, Σ, called the
‘precision matrix’.¹6

he precision matrix, Σ, should not be confused with the generative model,W. he
generative model,W, records how much each prediction value contributes to the
sensory prediction, r; the precision matrix, Σ, records how much each component
of the sensory prediction error, e, is dampened. Introducing weighted connections
between error units eòectively creates a new degree of freedom for how sensory
prediction error might be minimised when the ANN runs. Potentially, a prediction
error can be reduced by changing the prediction values (y), changing the generative
model (W), or by changing the precision weighting over the error signal (Σ) to
selectively dampen certain components of the signal. Minimising sensory prediction
error thus involves, not just changes to two parameters, y,W, but potentially changes
to three parameters, y,W, Σ. he individual steps that constitute inference (which
governs changes to y for ûxedW) and learning (which governs changes toW for
ûxed y) are widely known and typically take a form similar to those described above.
However, at the algorithmic level it is not immediately obvious which step-by-step
procedure should govern changes to Σ.

Bogacz (2017) suggests that the algorithm for changing Σ should be a Hebbian
learning rule of the same kind as that which determines the changes to W (pp. 206–
208). he virtue of this proposal is that it makes it straightforward to incorporate
changes to Σ into predictive coding’s algorithm: connection weights, Σu,v , should be
updated according to the same rule, and at the same time, as connection weights for
the generative model, wi, j. However, treating connection weights for the generative
model and those for precision weighting of the error signal in the same way suggests
that any change to precision weighting will be a relatively ‘slow’ process, one that
unfolds in the same gradual, incremental way as learning. To this end, Bogacz
observes that the precision matrix should be viewed as relatively stable quantity
that, like the generative model, is acquired and maintained over one’s lifetime;

¹5Equivalently: it allows certain prediction values or model parameters to held more ‘conûdently’
by the system than others because they are less likely to be changed by activity �owing into their
corresponding error units.

¹6he inverse of the Σ matrix is sometimes called the ‘covariance matrix’.
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it is not a volatile parameter, like y, that may change rapidly and drastically on
short timescales (p. 202). his does not, however, sit well with what predictive
coders say about the psychological function of precision weighting. hey associate
precision weighting with the allocation of the subject’s attention. his appears
to place changes to precision weighting, Σ, on the ‘short’ timescale of inference
rather than the ‘long’ timescale of learning. Precision weighting should be capable
of rapidly and dramatically reshaping the �ow of information across the system
to produce the psychological and behavioural eòects observed in, for example,
task switching or attentional capture.¹7 It is hard to see how these kinds of quick,
transformative changes in the ANN can occur if changes to precision weighting
are restricted to taking place at timescales much longer than those of inference. In
other words, it is not clear how a slow, gradual, Hebbian-based learning rule could
be responsible for them.¹8

Kanai et al. (2015) sketch a diòerent procedure by which changes to Σ might be
produced. hey claim that changes to precision weighting are determined extrinsic-
ally, by a second ANN, which they provisionally locate inside the pulvinar nuclei of
the thalamus (see Sprevak, forthcoming[c], Section 6). Like with the present ANN
– which they claim is physically implemented in the neocortex – this secondary
ANN may be interpreted as performing a variety of message-passing subjective
Bayesian inference (see Section 5). In distinction to the primary ANN however,
the secondary network is arranged to perform a ‘second-order’ inference about the
precision of (inverse of the variance of the degree of belief in) the error signals in the
ûrst ANN. he units of the two ANNs are joined by a series of connections such that
the second ANN receives both predictions and prediction errors from the primary
ANN, and its second-order predictions about precision weightings in�uence the
Σ values of the ûrst ANN. Hohwy (2012) provides an informal description of how
this arrangement is supposed to work (pp. 3–4). However, the precise details of
the numerical algorithm – the speciûc individual mathematical steps taken by the
second ANN to modify the connection weights Σ of the ûrst ANN – are still not
clear or widely agreed.

2.5 Extending the algorithm

he algorithm sketched so far should be understood as only a basic skeleton that
may be extended in any number of diòerent ways. What we have described could
be viewed as the most simple example of predictive coding. We assumed that
each layer is governed by a linear generative model and that this model has a

¹7See Clark (2016), pp. 146–151; Friston (2003), p. 1345.
¹8An additional puzzle is how shi�s in attention could be under volitional control if changes to Σ

are determined by the rules of Hebbian learning.
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ûxed number of parameters ( nm2 ).¹9 here is no scope for a layer to depart from a
linear generative model, grow or shrink the number of parameters (by creating or
removing a prediction unit or connection), change its activation function, break
the symmetrical arrangement of equal and opposite weighted connections between
prediction and error units, swap the learning rule, or otherwise depart from the
many assumptions hard-wired into the algorithm. It is natural to wonder whether
some of these assumptions regarding how a layer tries to predict its input should be
loosened or modiûed.

It is common to suggest that the simple algorithm for a single layer should be
modiûed to introduce some non-linearity into the generative model. Friston argues
that the brain approximates sensory input using a non-linear generative model in
which prediction units, yi , have a non-linear in�uence on the error units below them,
ei .²0 his means that changes in the activation level of error units during inference
need not be proportional to changes in the activation level of their connected inputs
– the input an error unit receives may depend on both lateral interactions between
prediction units and on a non-linear function of their individual activation levels.

Bogacz (2017) discusses several ways in which such a non-linearity might be built
into the steps taken by the ANN. hese include modifying the activation function
of prediction or error units, or inserting additional artiûcial ‘inter-neurons’ with
non-linear activation functions between the existing prediction and error units
(p. 203). he exact nature of the non-linear function that should aòect the outputs
of the prediction units is also unclear. Friston interprets the connections between
prediction and error units as encoding a generative probabilistic model of the
sensory input (see Section 5). he required non-linear function could therefore be
assumed to correspond to whatever would be necessary to encode the non-linear
aspects of that probabilistic model.

A predictive coding algorithm need not be restricted to using a generative model
with a set number of parameters. FitzGerald, Dolan and Friston (2014) suggest that
the predictive coding algorithm engages, not only in inference and learning, but also
in model comparison. Model comparison is usually regarded as a step that occurs
at a level of abstraction above learning. Whereas learning assumes the system is
using a generative model with a ûxed number of parameters and it aims to optimise
the values of those parameters relative to some objective function (e.g. to minimise
prediction error), model comparison aims to ûnd the type of generative model to
subject to learning (e.g. would a model with N or N + 1 parameters do a better job?).
he predictive coding algorithm described above does not attempt to do any model

¹9Half the n × m elements of W are ûxed because of the assumption made about reciprocal
connections between prediction and error units, w i , j = −w j, i .

²0Friston (2005), p. 823; Friston (2009), Box 3 on p. 297.
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comparison. It is restricted to using a generative model with a ûxed structure and
with nm

2 parameters. FitzGerald, Dolan and Friston (2014) propose that the brain
does something akin to model comparison, albeit slightly more sophisticated, called
‘Bayesian model averaging’.

Bayesian model averaging assumes that the system has not one, but many generative
models and that it has a subjective probability distribution over those generative
models re�ecting its prior credences in those models. he agent then applies Bayes’
rule to calculate a posterior probability distribution over all its generative models
given the observed data (Bishop, 2006, pp. 161–165). At this point, the agent could
conceivably elect to adopt just one generative model – perhaps the one with the
highest subjective probability given the data, the ‘maximum a posteriori’ model.²¹
Alternatively – and this is what FitzGerald, Dolan and Friston (2014) suggest – the
agent may continue to operate in a Bayesian fashion and entertain a full posterior
subjective probability distribution over all its generative models and deploy this full
posterior distribution in inference, updating it and revising its degree of belief in
those models as more data comes in.²² he predictions that the agent generates on
such a scheme would be the average of the predictions of all models weighted by the
system’s posterior subjective probability in each model given the observed data.²³
FitzGerald, Dolan and Friston (2014) propose that this model averaging process
occurs, not inside a single layer of predictive coding’s ANN, but in the interaction
between discrete layers, with the predictions from diòerent generative models being
weighted by their diòerent top-down in�uences on lower layers (ibid., p. 3). he
precise implementation of this, both in terms of the speciûc steps that an ANN

²¹his would be a form of Bayesian model selection.
²²Note that Bayesian conditionalisation introduces a ‘bias’ towards simpler, more constrained

models. Models with fewer parameters will eòectively receive a bonus during Bayesian condi-
tionalisation – a higher probability in the agent’s posterior distribution – even if the agent was
indiòerent between those models before. Roughly speaking, this is because a model that makes no
assumptions about the speciûc value of some additional parameter should, everything else being
equal, be assigned more subjective probability than one that makes exactly the same assumptions
and an extra assumption about that additional parameter’s speciûc value. Bayesian model com-
parison (and model averaging) will thus tend to drive an agent towards models with fewer free
parameters. (See MacKay, 2003, pp. 343–351 for a full explanation of how this Bayesian “Occam’s
razor” works.) FitzGerald, Dolan and Friston (2014) argue that this feature provides an explanation
of how predictive coding can allow the brain to optimise for both simplicity as well as predictive
accuracy of its generative model (c.f. Sprevak, forthcoming[a], Section 2).

²³FitzGerald, Dolan and Friston (2014) claim that the computational task of Bayesian model
averaging also entails minimising variational free energy, and hence (granted certain additional
assumptions) minimising sensory prediction error. herefore, like inference and learning, Bayesian
model averaging falls under predictive coding’s single computational-level task description of
minimising sensory prediction error (pp. 2–3, Appendix A3–A5). See Friston and Stephan (2007),
pp. 434–435.
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should take and its physical basis remains, however, somewhat unclear.²4

Clark (2016) suggests that the number of parameters in the generative model might
change over time because the connections between prediction and error units
may be subject to some ‘pruning’ algorithm (p. 272). A pruning algorithm is a
procedure that would systematically remove connections between prediction and
error units that are, according to the algorithm, deemed to be redundant. Many
possible pruning algorithms exist for ANNs.²5 hese algorithms normally operate
on a timescale that is longer than both those of inference and learning, attempting
to remove connections a�er one or more episodes of learning are complete. It is
not clear which pruning technique should apply to predictive coding’s ANN, the
timescale it should run on, and how its operation would ût with FitzGerald, Dolan
and Friston (2014)’s proposal about Bayesianmodel comparison and Bayesianmodel
averaging.

hese suggestions are indicative of just a few of the ways in which the basic algorithm
of predictive coding might be changed or elaborated. he research programme of
predictive coding takes the basic ANN described in the preceding sections as a
starting point and develops it in diòerent ways.

3 An algorithm, not an implementation

It is important to stress that what has been described is an algorithm. he ANN is
sometimes called an ‘implementation’ of predictive coding.²6 his terminology is
potentially misleading as there are no assumptions about physical implementation
built into the model. here is no assumption, for example, that the units depicted in
Figure 1 are physical neurons, that their connections correspond to synapses, or that
their activation levels map in any straightforward way to neural ûring rates. What
has been described is a numerical procedure – a step-by-step method for modifying
numbers. It accomplishes a task deûned solely in numerical terms: to ûnd values of
y andW that minimise∑i

(xi − ri)2 for a sequence of given x (that we have labelled,
without further justiûcation, ‘sensory input’).

Despite its name, an artiûcial neural network is no more neural than any other
algorithm, such as QuickSort, the Newton–Raphson algorithm for ûnding roots of
real-valued functions, or the Runge–Kutta algorithm for ûnding solutions to ordin-
ary diòerential equations. he prediction and error units and connections shown
in Figure 1 may, in some loose sense, be suggestive of neural structures in the brain.

²4See the brief discussion of this in FitzGerald, Dolan and Friston (2014), Appendix A5.
²5For a survey, see Blalock et al. (2020).
²6Friston (2005), pp. 822–823; Friston (2010), p. 132; Rao and Ballard (1999), p. 86; Spratling

(2017), pp. 93–94.
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But it should be clear that what is proposed here is only a numerical method for
solving a numerical problem – eòectively, a long sequence of elementary additions
and multiplications that would enable someone without insight or ingenuity to
estimate one set of values (x) with another set of values (y,W, Σ). hese operations
could easily be implemented in any number of pieces of hardware, including very
un-brain-like hardware, such as an electronic PC.

What advocates of predictive coding are likely to mean when they describe the
ANN as an implementation of predictive coding is that the algorithm in question is
biologically plausible – it is the kind of algorithm that could be implemented in a
brain. It is based around numerical states and procedures – a network-like structure,
vector-based computational states, and Hebbian learning – that lend themselves to
neural implementation.²7 However, the possibility of neural implementation does
notmean that what has been described is a neural implementation. What is proposed
at the algorithmic level by predictive coding is a sequence of abstract numerical
operations to accomplish a computational task that has been characterised as a
numerical problem. Precisely how these operations map onto the hardware of the
brain, or onto the informal task description of a real-world agent minimising its
sensory prediction error, is a separate issue and one that we will turn to later (see
Sprevak, forthcoming[c]).

4 Hierarchical structure

A single layer attempts to predict its sensory input using a model,W, each of whose
variables, yi , makes an independent contribution to the prediction. his kind of
modelmakes sense if each variable of themodel aims to track an independent feature
of the input. However, many worldly features that are useful to track for prediction
are not structured in this way. O�en they stand in a hierarchical relationship to
each other. For example, the general category of an encountered object (e.g. living
thing, inanimate object) constrains the speciûc type of object it is (human being,
cat, dog), which further constrains its identity (your father, Tiddles the cat). hese
are not three independent features in the world, but ones that stand in a well-
deûned relationship to each other. hey should not be modelled by three variables
with no inherent structure, but by variables that somehow capture the hierarchical

²7See discussion of this point in Friston (2005), p. 823; Friston (2010), p. 130; Bogacz (2017),
pp. 199, 209. Spratling (2017) raises doubts about neural plausibility of the version of the predictive
coding algorithm described here as it assumes prediction and error units can take negative values
as activation levels (pp. 94–95).
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relationship between their corresponding features.²8

A rich source of hierarchical relations between worldly features derives from features
that occur on diòerent spatial and temporal scales. he brain tracks sensory inform-
ation at multiple spatiotemporal levels and information at one spatiotemporal scale
helps constrain the brain’s hypotheses at another.²9 he visual system, for example,
tracks large-scale, ‘gist’-like features – e.g. whether it is facing a jungle, desert, or
underwater scene – as well as small-scale, ‘detail’-like features – e.g. whether a par-
ticular patch of colour is green, red, or blue. he external features that generate our
sensory input are structured in a hierarchical fashion over multiple spatiotemporal
scales. A plausible strategy for an accurate predictive model would be to aim to
mirror that structure inside the model. Rao and Ballard summarise the rationale as
follows:

he underlying assumption here is that the external environment gener-
ates natural signals hierarchically via interacting hidden physical causes
(object attributes such as shape, texture and luminance) at multiple
spatial and temporal scales. he goal of a visual system then becomes
optimally estimating these hidden causes at each scale for each input
image and, on a longer time scale, learning the parameters governing
the hierarchical generative model. (Rao and Ballard, 1999, p. 80)³0

Despite their focus on causal structure, there is nothing speciûcally causal about
the point Rao and Ballard make about the beneûts of using a hierarchical model
for prediction. Any hierarchical relationship between external properties in the
world – be that a hierarchy induced by a causal structure or one that arises for any
other reason, e.g. due to the relationship between determinables and determinates or
between types and tokens –might proûtably bemodelled by amodel that reproduces
the hierarchy amongst the variables that track them.³¹

²8See Gelman and Hill (2007), pp. 3–8 for discussion of the beneûts of using hierarchical models
for prediction. See Mumford (1992) for an informal description of a hierarchical form of predictive
coding in which the brain tries to match pattern-recognition ‘templates’ at various levels in its
processing. Lee and Mumford (2003) give a more detailed hierarchical Bayesian version of the
model for the visual system, albeit one that uses a diòerent algorithm for inference (particle ûltering)
to that typically associated with predictive coding (variational inference using message passing).

²9Hochstein and Ahissar (2002); Kadar and Ben-Shahar (2012).
³0See also Friston, Kilner and Harrison (2006), p. 70.
³¹Building a hierarchical model of the world is one strategy to achieve accurate predictions. his

is not to say that a predictive model that fails to encode the true hierarchical (causal or other)
relationships between hidden features in the world might not be good enough at prediction for
many practical purposes. See Cisek and Kalaska (2010) on the beneûts of simple, ‘pragmatic’
representations and Clark (2016), Ch. 8 on ‘frugal’ forms of prediction.
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Figure 3: Hierarchical predictive coding according to two diòerent schemes for
dividing the ANN into layers. Rao and Ballard’s scheme is shown on the le�-hand
side; Spratling’s is shown on the right-hand side. Single prediction and error units
inside each layer (circles in the previous diagram) are omitted for simplicity (adapted
from Spratling, 2017, p. 95)
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he predictive coding algorithm encodes relationships between variables using a
hierarchy of interlinked generative models. It consists of a stack of multiple ANNs,
each identical to that described in Section 2, connected to each other. Each error
unit of a layer (ei) connects to a prediction unit in the layer below (yi). So deûned,
the computational task of a single layer of the ANN is to predict the activation
levels of the prediction units inside the layer below (the output of that lower layer
serves as its ‘sensory input’). Activation levels of prediction units in layers that are
increasingly distant from sensory input will tend to track more abstract, high-level
features in the sensory input.³² he bottom-most layer has no prediction units below
it; its inputs are clamped to some externally supplied sensory input, x, as shown in
Figure 1. he entire stack of layers will adjust the activation levels of prediction units,
yi , during inference to minimise sensory prediction errors, ei , via gradient descent,
with each layer operating to minimise the prediction error about the prediction
values of the layer below. When the network is allowed to run, activation levels
will evolve to minimise prediction error concerning the external sensory signal, x,
consistent with minimising prediction error at each level of the model’s hierarchy.

From the point of view of a single layer, the primary change from the model previ-
ously described is the introduction of new connections between layers (denoted by
vertical lines in Figure 3). hese connections allow the predictions at one level of the
predictive hierarchy to in�uence (via the intervening error units) the predictions at
other levels. Unlike the weighted connections inside a layer, which are used to en-
code the generative model, these new connections between layers are of a constant,
equal weight and they are not subject to modiûcation by learning. Each error unit
is assumed to connect to exactly one prediction unit in the layer below – i.e. each
component of eSi is connected, by reciprocal excitatory and inhibitory connections,
to a single component of ySi . Given this arrangement, each error unit will measure
the prediction error for its counterpart prediction unit in the layer below (or, for
the bottom-most layer, the error in predicting the corresponding component of the
sensory input, x).

To see why the new connections do this, consider the S1 error units in Figure 3. heir
activation levels are a function of just two factors: (i) excitatory inputs they receive
from prediction units in the layer below (yS1); (ii) inhibitory inputs they receive
from the layer’s own prediction units ûltered through the connection weights of the
model (WyS2). he net activation level of the S1 error units is thus:

eS1 = yS1 −WyS2

he error units eS1 signal the diòerence between (i) the actual activation level of

³²See the results of simulations run by Rao and Ballard (1999), p. 84.
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the prediction units inside the layer below (yS1) and (ii) a ‘prediction’ about those
levels generated by the prediction units from above (WyS2). If these two quantities
were to match exactly, then the eS1 units would be silent. If the discrepancy between
these two quantities were to increase, so would the activation level of the eS1 units.
he error units provide a measure of prediction error – the prediction values minus
the layer’s estimate of those prediction values based on its generative model.³³

Figure 3 omits the inhibitory connections, Σ, between error units that encode
precision weighting. However, these can be straightforwardly incorporated into
the ANN. With respect to the equation above, this would involve introducing a
normalisation term that modulates the response of the error units in proportion to
their relative precision weighting. If the inhibitory connections, ΣS1, were added,
the error units in S1 would signal precision-weighted prediction error, eS1 = Σ−1

S1(yS1 −
WyS2).³4
he hierarchical ANN for predictive coding is governed by exactly the same rules
for inference and learning as those for the single layer described in Section 2. he
activation function and the Hebbian learning rule are applied to every unit and
weighted connection in the network as inference and learning proceed. he generat-
ive models encoded in the connections linking prediction and error units, since they
are used at the same time, may be viewed as components of one giant, overarching,
hierarchical generative model. Like with other ANNs, the pictured ANN is no more
than a compact, ûnite mathematical formalism that prescribes a long sequence of
additions andmultiplications. What advocates of predictive coding mean by propos-
ing this model is that this sequence would take anyone that follows it from one set
of numerical values x, to a series of ‘prediction value’ vectors (ySi) and ‘generative
model’ matrices (WSi), such that when the prediction values are combined with the
generative model according to the rules above, the x are reconstructed as accurately
as possible, given that what counts as ‘accuracy’ is modulated by a further set of
values, the ‘precision weightings’ (ΣSi).

he formal model described so far is based on Spratling’s (2017) account of hierarch-
ical predictive coding. According to Spratling, a single layer of the hierarchical ANN
is a set of prediction and error units connected by weighted connections (i.e. ySi+1
and eSi form a layer). he function of a layer of the hierarchy, so deûned, is to predict
the activation levels of the prediction units in the layer below. Its success or failure
in this is tracked by the activation levels of the layer’s own error units. Given this
assumption, the connections inside a layer have a relatively complicated structure –
their weights encode a generative model and are subject to change during learning.
In contrast, the connections between layers have a relatively simple structure and are

³³See Bogacz (2017), p. 201; Friston (2003), pp. 1343; Friston (2005), p. 821; Spratling (2017), p. 94.
³4See Bogacz (2017), pp. 202, 204–208.
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not subject to change by learning. he function of the connections between layers
is to compute the prediction error, as described by the equation above. Consequently
on Spratling’s view, the outputs of a ‘layer’ are: (i) its prediction values, yi , which are
passed up the hierarchy to the layer above; (ii) its prediction error values, ei , which
are passed down the hierarchy to the layer below. In short, error signals will �ow
downwards and prediction values will �ow upwards between layers.

he hierarchical model ûrst proposed by Rao and Ballard (1999) and subsequently
developed by Friston (2005), Friston (2008), and Bogacz (2017) operates with a
diòerent conception of a hierarchical layer. For Spratling a ‘layer’ means a set of
prediction and error units connected by weighted connections. For Rao and Ballard,
it means a set of prediction and error units that stand in one-to-one relationship to
each other (i.e. ySi and eSi form a layer). he function of a layer of the hierarchy, so
deûned, is to compute the prediction error. he error units subtract the prediction
made by the layer above from the prediction values held inside the layer, as described
by the equation above. Given this assumption, the connections inside a layer have a
relatively simple structure and are not subject to change by learning. In contrast, the
connections between layers have a relatively complicated structure – their weights
encode a generative model and are subject to change during learning. On Rao and
Ballard’s view, the outputs of a ‘layer’ are: (i) its prediction values, yi , which are
passed down the hierarchy to the layer below; (ii) its prediction error values, ei ,
which are passed up the hierarchy to the layer above. In short, error signals will
�ow upwards and prediction values will �ow downwards between layers.

It is important to emphasise that these two proposals, considered purely as numerical
methods, are identical. hey agree about which mathematical steps should be taken,
when they should taken, and in what order. heir point of disagreement concerns
only how to label features of the ANN as ‘layers’. Which method of labelling one
favours makes no diòerence to the step-by-step operation of the abstract algorithm.
his diòerence does, however, have consequences when it comes to making claims
about the neural implementation of the algorithm. hese claims involve mapping
labelled parts of the algorithm (e.g. layers) onto discrete brain structures (e.g. cortical
areas). We will explore how these two notions of layer aòect claims about neural
implementation in Sprevak (forthcoming[c]), Section 3.

5 Representing probabilistic guesses

In the preceding sections, I described the predictive coding algorithm as a numerical
method that takes a set of numbers (‘sensory input’) and ûnds two sets of numbers
(‘prediction values’ and ‘generative model parameters’) that, if combined, would
reconstruct the ûrst set as accurately as possible relative to some agreed (precision
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weighted) error measure. However, these formal steps are frequently accompanied
by an interpretation that connects the numbers to features that matter to the brain in
cognition. he numerical values are meant to be understood not simply as abstract
numbers; they should also be linked in some way to the informally characterised
task that the brain faces of minimising its sensory prediction error. Interpretations
have already been hinted at by the labels we assigned to these values (‘sensory input’,
‘prediction’, etc.), but there is more to say here.

One might distinguish between interpretations of predictive coding’s algorithm that
are representation-light – that do not assume that the algorithm is a process deûned
over representations – and those that are representation-heavy – that do assume
that the algorithm is a process deûned over representations.

According to a representation-light interpretation of the algorithm, the numbers
correspond to certain physical quantities of functional signiûcance to the brain in
cognition. Precisely which physical quantities would be speciûed by what predictive
coding says at the implementation level (Sprevak, forthcoming[c]). One might,
for example, suggest that the magnitude of the x values measures the ûring rate of
certain neurons at the sensory periphery; the magnitude of the y values measures of
the ûring rate of certain populations of cortical neurons; and the magnitude of the
W values measures the strength of synaptic connections between those populations
of cortical neurons. Given this interpretation, the algorithm describes not just
abstract relationships between numbers, but also how cortical neurons cooperate to
suppress incoming sensory signals.

If one adopts this interpretation, then when one says that the brain issues a ‘pre-
diction’, there need be no suggestion that the brain represents that sensory signal,
that it has a hypothesis ‘about’ it. he interpretation does not commit to the al-
gorithm involving content-bearing, semantically evaluable states – ‘representations’
as normally conceived. A ‘prediction’ on this reading is not like a weather report
that provides a prediction about tomorrow’s weather. Instead, it would ‘predict’ in
the same sense that the seat of your chair ‘predicts’ the downward force exerted by
your body: by cancelling it out, or quenching it. he predictive coding algorithm
describes how certain physical magnitudes in the brain (quantiûed by y values)
combine with other physical magnitudes (quantiûed by W values), to cancel out
further physical magnitudes near the sensory boundary (quantiûed by the x values).
‘Prediction’ should be understood as a process of brute matching of incoming phys-
ical signals at sensory neurons. If a prediction is ‘successful’, that would mean that
the brain’s internally generated physical signals successfully counterbalance those at
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the sensory boundary caused by the world.³5 Precisely which physical quantities
are in balance – which aspects of brain function map onto which numerical values
of the algorithm – will depend on what is said by predictive coding at Marr’s im-
plementation level. However, the basic idea – which might be �eshed out in many
diòerent ways – is that the numbers and mathematical operations in the algorithm
should be understood as useful ways of describing the dynamics of physical brain
activity. Such an interpretation of predictive coding’s algorithm is notably silent
about whether any representations are manipulated during that physical process.³6

A representation-heavy reading assumes that the algorithm describes, not only the
physical dynamics of brain activity, but also how representations are processed
during cognition. In this case, a ‘prediction’ should be understood, at least roughly,
on the model of a weather report. A prediction is associated with both a physical
magnitude (as speciûed by the account of implementation) and a semantic content.
It makes sense to ask what a prediction is ‘about’, what it refers to in the world.
he numerical states and operations of the algorithm should be understood as
describing not only physical dynamics, but also a kind of semantically rich inference.
Representations are manipulated according to steps determined by the algorithm
and that inference may be evaluated as conforming (or not) to various norms. It is
not unusual for computer algorithms to be interpreted in this way. A chess-playing
algorithm, for example, is o�en interpreted as requiring changes not only in the
physical states of any machine that implements it, but also the manipulation of
representations of chess pieces and chess positions in such a way that conforms to
the norms that govern the game of chess.³7

he dominant representation-heavy interpretation of the predictive coding al-
gorithm treats that algorithm as describing a form of probabilistic inference (Bogacz,
2017; Friston, 2005; Friston, 2009; Friston, 2010). On this view, the representations
being manipulated are subjective probabilities (probabilistic representations) and
the process described by the algorithm is a form of approximate Bayesian inference.
he key assumption of this interpretation is that the numerical activation levels and
weights of the ANN units and connections encode the suõcient statistics of subjective
probability distributions. hese subjective probability distributions are the brain’s

³5Mumford (1992) describes how the brain strives to match incoming sensory stimulation – to
inhibit the sensory neurons to the right degree to counteract the excitatory stimulation they receive
from the outside world. A ‘perfect’ prediction means that the relevant sensory neurons would be
silent (p. 247).

³6Hohwy (2013) gives a wonderful illustration of a representation-light reading of the predictive
coding algorithm by describing a Rube Goldberg-esque machine that ‘predicts’ – without in any
obvious fashion using representations – leaks in a water dam by progressively moving a hierarchy
of arms, cogs, wheels to insert plugs into spots where leaks have tended to appear (pp. 62–63).

³7See Baker (1985), pp. 6–7.
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subpersonal guesses or hypotheses about the values of various hidden variables
in the environment (e.g. shapes, sizes, locations, and identities of environmental
objects). hese subjective probability distributions are combined during inference –
according to the step-by-step rules described by the algorithm that progressively
modify the values that correspond to their suõcient statistics – to generate a predic-
tion about the sensory signal. Just as a classical computer algorithm – that applies
symbolic rules to symbolic expressions – provides a way to automate deductive
inference, so an ANN – that applies simple mathematical operations to numbers –
provides a way to automate probabilistic inference. Given the right interpretation,
an ANN with the appropriate structure can be viewed as a probabilistic inference
engine.³8

One of the main assumptions adopted by this representation-heavy interpretation
of predictive coding is that the brain’s marginal subjective probability distributions –
its subpersonal guesses marginalised over speciûc variables – are always Gaussian,
and so they can be fully characterised by just two numerical values, a mean and
variance. hemean is assumed to be encoded by the activation level of an individual
prediction unit, yi . he variance is assumed to be encoded in the weight of the
intrinsic inhibitory connection of the prediction unit’s corresponding error unit, Σi,i .
he covariance between marginal distributions (yi , y j) is encoded by the weights of
lateral connections between their corresponding error units, Σi, j. he conditional
probabilities that determine how marginal distributions are combined in inference
are encoded by the connection weights between prediction and error units, wi, j. If
one interprets the numbers in the ANN in this fashion, the step-by-step operations
of the ANN’s algorithm can be shown to implement a message-passing form of
Bayesian inference over a graphical probabilistic model. Predictions (Wy values) in
higher layers of the ANN’s hierarchy can be shown to act as priors on subjective
probabilities (y) in lower layers.³9

We saw in Section 2.5 that there is no single, agreed algorithm for predictive coding.
Diòerent proposals might be developed about the precise structure of the ANN,
the activation functions of its units, and the learning rule that governs its weighted
connections. here is also scope for diòerent proposals about how to interpret an
ANN’s numerical elements as encoding subjective probability distributions, and

³8he notion that numerical activation values and connection weights inside an ANN can be
interpreted as subjective probabilities and the rules of the ANN as entailing that the network
performs some form of Bayesian (or some other kind of) probabilistic inference is not new. For
discussion of the employment of ANNs as probabilistic inference engines, see Hinton and Sejnowski
(1983); Hinton and Sejnowski (1986); MacKay (2003), Ch. 41; McClelland (1998); McClelland (2013).
For discussion of the general idea of algorithms as ways to automate semantic inference – automatic
formal systems as ‘semantic engines’ – see Dennett (1987); Haugeland (1981).

³9See Bogacz (2017), pp. 199–202; Friston (2005), 821–822 for worked examples.
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consequently about exactly what kind of probabilistic inference the ANN should be
interpreted as performing. here is widespread agreement that predictive coding’s
ANN should be interpreted as performing some form ofmessage-passing probab-
ilistic inference over a probabilistic graphical network.40 he nodes, edges, and
numerical values of that graphical probabilistic model should correspond in some
(ideally simple!) way to the structure of the ANN and its processing. But exactly
how the probabilistic graphical model maps onto the structure of the ANN, and
exactly which message-passing algorithm is performed, is not clear. he substance
of a representation-heavy interpretation will therefore depend on both the details of
the ANN in question and on the exact scheme for how the numerical values of ANN
are mapped onto subjective probability distributions. As with representation-light
options, there is scope here for diòerent ideas. Friston, Parr and de Vries (2017)
and Parr et al. (2019) review a range of options, including algorithms that perform
variational message passing (a message-passing version of variational Bayes) and
belief propagation (a message-passing form of exact Bayesian inference).

On a representation-light interpretation, the ANN describes the physical dynamics
of the brain as it inhibits incoming sensory signals. On a representation-heavy in-
terpretation, the ANN describes, in addition, a form of probabilistic reasoning over
subpersonal hypotheses entertained by the brain about its environment. Predictive
coders o�en move freely between representation-light and representation-heavy
formulations of their algorithm. It is fair to say that it is an open question whether
predictive coding should be interpreted in a representation-heavy way or not. Com-
plicating the issue is a lack of clarity about how any ascription of subpersonal
subjective probabilities to the brain should be understood in cognitive neuroscience
– whether such probabilistic representations are ‘really there’ in the brain or whether
talk of them is just a useful façon de parler for us to interpret and group together
neural activity.4¹ hese foundational issues about neural representation are however,
to an extent, orthogonal to the speciûcs of predictive coding’s algorithmic-level
proposal. hat proposal is, in principle, compatible with a range of diòerent views
regarding how we understand representation in the brain, including viewing it as
performing a highly speciûc form of subjective Bayesian inference or remaining
neutral about whether it performs any semantically rich inference at all.

40For a general introduction to message-passing forms of probabilistic inference and graphical
probabilistic models and, see Bishop (2006), Ch. 8; MacKay (2003), Chs. 16, 26; Russell and Norvig
(2010), Ch. 16.

4¹See Colombo and Seriès (2012); Colombo, Elkin and Hartmann (2018); Jones and Love (2011);
Rescorla (2016).
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6 Going beyond perception

he algorithm described in this article was originally proposed as a model of percep-
tual classiûcation in the early visual system (Rao and Ballard, 1999). Understood this
way, the algorithm takes raw sensory data as input and classiûes these data into basic
visual features based on a multi-layered artiûcial neural network. Subsequently, the
predictive coding research programme has gone on to suggest that this algorithm
is of much wider signiûcance to neural function. It should be treated, not just as
a model of perceptual classiûcation in the early visual system, but potentially as a
model of all cognitive processing. In its most ambitious form, the claim is that a
single, giant ANN, like that pictured in Figure 3, is the computational engine behind
all aspects of cognition (Friston, 2010, p. 130). Under Friston’s representation-heavy
interpretation of the ANN, this would mean that every cognitive process could be
viewed as a Bayesian inference over a single, hierarchical, probabilistic generative
model (Clark, 2013, pp. 194, 198).

In Sprevak (forthcoming[b]), we saw that one respect in which predictive coding
oòers a grand, uniûed theory of cognition is that it claims that a single computa-
tional task is faced by the brain in every domain of cognition – namely, the task
of minimising sensory prediction error. Advocates of predictive coding are o�en
also attracted to the idea that predictive coding oòers a grand, uniûed theory of
cognition in another, quite separate, respect. his is that a single type of abstract
computational method is used by the brain to solve its task – namely, some (more
sophisticated) version of the ANN pictured above. On this view, cognition would
not only have a single, uniûed objective; the brain would also attempt to reach that
objective by a singlemeans.

his goal of providing a process-level uniûcation of cognition is clearly aspirational.
As we saw in Section 2.5, important elements of predictive coding’s algorithmic-level
theory remain to be spelled out, and this could be done in many diòerent ways.
Furthermore, anyone who wishes to defend the process-level uniûcation would need
to show that their algorithmic-level claim successfully models, not only cognitive
processes inside the early visual system, but all aspects of cognition (includingmotor
control, decision making, causal inference, executive function, and so on). Whether
predictive coding can succeed – at the algorithmic level – as a grand, uniûed theory
depends on the extent it can successfully be applied to cognitive processes outside
early vision.

he challenge is structurally similar to that faced by predictive coding at Marr’s
computational level, as discussed in Section 7 of Sprevak (forthcoming[b]). In that
case, the problem was to show that a single task description (originally proposed for
early vision) can and should describe every problem the brain faces in cognition.
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In the present case, the problem is to show that a single algorithm (also originally
proposed for early vision) can and should describe every cognitive process. Neither
challenge is likely to admit of quick or easy resolution; both should be viewed as
issues that set the long-term agenda of a research programme. he two challenges
are also distinct. Even if the computational-level claim were established – if it were
shown that every task the brain faces can and should be described as minimising
sensory prediction error – it would still be an open question whether the brain uses
the same method to tackle that task in every case. A brain could conceivably use a
range of computational techniques to minimise its sensory prediction errors. he
ANN might be representative of only one of these. Advocates of predictive coding –
even if they agree about the universal scope of the computational-level claim – may
disagree about how far, and to exactly which cases, its algorithmic-level proposal
should be applied outside the original domain of processing in early vision.4²

As with its computational-level proposal, predictive coding needs to demonstrate
both the empirical adequacy and explanatory superiority of its algorithmic-level
proposal relative to other algorithmic-level proposals. It needs to show that cognitive
processing outside early vision – e.g. in motor control, decision making, planning,
and so on – can and should be treated as following the steps of the ANN above. he
next section describes how predictive coding applies the hierarchical ANN to motor
control. More diõcult for predictive coding to accommodate at the algorithmic
level are high-level cognitive processes such as logical reasoning, causal reasoning,
inductive inference, long-term planning, and executive control. It is simply not
obvious how to get the ANN above (or indeed any ANN) to simulate these processes
in a way that achieves human-like levels of performance.4³

6.1 Example of motor control

At ûrst glance, motor control might seem an unlikely candidate for explanation in
terms of the operation of the ANN. he pictured ANN for predictive coding has
‘sensory inputs’, but no outward-facing connections labelled ‘motor outputs’. One
might assume that the ANN sits exclusively on the ‘perception’ side of cognition and
that it needs to be connected to some separate computational system that deals with
‘motor control’. However, advocates of predictive coding have oòered an ingenious
proposal for how a single ANN could simultaneously govern both perception and

4²Clark (2016), Ch. 8 suggests that the brain uses a diverse range of computational methods to
minimise its sensory prediction error, including ‘quicker, dirtier, more “embodied” ’ strategies than
the hierarchical algorithm described above (p. 268). He does suggest, however, that the hierarchical
ANN is not simply one technique among others, but that it plays a special, structuring role in
training, coordinating, and recruiting all the other processes (pp. 252–260).

4³For discussion of challenges in dealingwithmodelling these cases, see Clark (2016), pp. 299–300;
Roskies and Wood (2017); Williams (2018).
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motor control.

his proposal is based around the idea that proprioceptive sensory inputs are con-
nected to muscles via classical re�ex arcs. When prediction errors cause these re�ex
arcs to ûre, they automatically produce movement. According to the model, activity
in the ANN follows the rules of inference and learning previously described and
unfolds with the objective of minimising sensory prediction error. hat sensory
prediction error will be the precision-weighted average of every component of
prediction error across all the cognitive system’s sensory channels (visual, audit-
ory, interoceptive, proprioceptive, and so on).44 In the proposed model of motor
control, the proprioceptive input channels play a special role. If the computational
system makes a prediction regarding the position of its limbs (e.g. that its le� hand
is holding a glass of water), then that prediction will have proprioceptive sensory
consequences. If the predicted proprioceptive sensory consequences do not match
the actual proprioceptive input signals (perhaps because the ûngers are not touch-
ing the glass), then there will be proprioceptive sensory prediction errors. If the
proprioceptive prediction error units are active (and not dialled down by a low
precision weighting), then the attached muscular re�ex arcs will ûre, causing the
corresponding muscles to which they are connected to contract. hose muscles will
cause the ûngers around the glass to close, which will reduce the proprioceptive pre-
diction error, making the previously false proprioceptive prediction true, reducing
the signal for that re�ex arc to ûre further. In this way, sensory prediction errors
concerning proprioceptive inputs have the ability to bring about motor action. In
this context, a sensory prediction concerning proprioception may function, not as
a passive prediction of incoming signals, but like a motor command.45

Many questions remain about how this is supposed to work. An important set of
worries surround how one should understand the direction of ût of predictions
inside the ANN. A cognitive agent is normally assumed to have two functionally
distinct types of internal state. hese may be called belief-like and desire-like state (or,
on a probabilistic model, credences and utilities).46 Roughly speaking, the former
type of state keeps track of how the world is for the agent; the latter records what the
agent aims for in its actions. According to the proposal above, both types of function

44Given that the single ANN attempts to minimise sensory prediction error averaged across all
sensory channels, one should expect that inside the ANN many prediction values (unit activation
levels) and generative model parameters (connection weights) will have a multi-modal character.
Advocates of predictive coding suggest that even at early stages within the sensory periphery, one
should expect multi-modal processing in the brain (see Clark, 2016, p. 121).

45See Adams, Shipp and Friston (2013) for the model. See Clark (2016), Ch. 4 for a helpful
informal summary. Friston, FitzGerald et al. (2017) give a worked example that simulates a range of
neural responses.

46See Russell and Norvig (2010), pp. 50–54.
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state map onto a single kind of formal state in the ANN. Predictions serve both as
the ANN’s estimation of how the world is and also how it desires the world to be.
In the example just described, the ANN predicts that it is holding a glass of water. It
maintains this false prediction instead of revising it in light of the countervailing
sensory evidence. Because the prediction is clamped, it can be used to drive re�ex
arcs which activatemotor neurons so that the agent will grasp the glass. In a diòerent
scenario, the ANN might issue the same prediction – that it is holding a glass of
water – but revise that prediction in light of its sensory evidence to re�ect the reality
that it is not currently holding the glass. In the ûrst case, the prediction has a
desire-like direction of ût – it is held ûxed and not revised even if the world does not
conform. In the second case, the prediction has a belief-like direction of ût – it aims
to track the world and should be updated based on incoming sensory signals (either
by changing the prediction values or by changing the parameters of its generative
model).

How does this dual role for prediction ût into the algorithm described above? What
makes a state of the ANN have a belief-like character rather than a desire-like one?
In other words, how does the ANN know when to hold its prediction values and
generative model ûxed to eòect motor control versus when to revise its prediction
values or generative model to improve the accuracy of its model? Clark (2016)
suggests that there is a delicate balance between the two modes of minimising
sensory prediction error during cognitive processing (p. 124). But how does that
balance operate? On the basis of what rule does the formal system ‘know’ whether
a prediction should be treated in one way rather than the other?47 he predictive
coding literature oòers twomain answers to this question, neither of which is entirely
satisfactory.

he ûrst suggestion is that the type of sensory input explains the direction of ût
of the corresponding predictions (Clark, 2016, p. 123; Friston, Mattout and Kilner,
2011). Sensory predictions regarding proprioceptive inputs play a special functional
role – they have a desire-like direction of ût – because they are connected to motion-
causing re�ex arcs. here are no counterparts of these connections for other sensory
channels – there are no muscular re�ex arcs connected to the receptors for vision.
Prediction errors for proprioception are thus uniquely wired to have behavioural
consequences. his gives predictions for proprioceptive sensory inputs an inherently
desire-like character.

While the presence of re�ex arcs is a necessary feature of the proposed model of
motor control, it is hard to see how it can explain the direction of ût of the ANN’s
predictions. For sometimes proprioception is used, like vision, in a passive way
to acquire sensory information – in such a case, proprioceptive prediction errors

47For further discussion of this and associated problems, see Klein (2018); Shea (2013).
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result in revisions to the model. When one puts one’s hands in one’s pocket to feel
the shape of an unknown coin to determine whether it is a û�y-pence piece, one’s
proprioceptive channels are used (primarily) to provide information to update one’s
model. On the basis of proprioceptive prediction errors, one might adjust one’s
predictive model to conclude that the coin inside one’s pocket is a pound coin, not
a û�y-pence piece. In this case, predictions about proprioceptive inputs have a
belief-like direction of ût. hey are not used in a (vain) desire-like way to force
the coin into the shape of a û�y-pence piece in order to make that prediction true.
But if proprioceptive sensory inputs may be used in a passive fashion to revise the
model, then it cannot be simply the proprioceptive nature of a sensory input that
determines whether the associated predictions have a desire-like direction of ût.

he second suggestion – intended to complement the ûrst – is that the degree of
precision weighting of an error signal explains the direction of ût of its associated
predictions (Brown et al., 2013; Clark, 2016, pp. 215–216; Friston, 2009, pp. 299–300;
Hohwy, 2013, p. 83). A high degree of precision weighting for a proprioceptive
signal indicates that a prediction error is more ‘important’ than others for the
computational system. Desire-like states should have a high degree of precision
weighting in order to motivate the system to act on them, and to drown out other
prediction errors that might drive behaviour. On this view, the graded distribution
of precision weights across the ANN could been seen as re�ecting a distribution of
more or less belief-like and desire-like states across the system’s predictions.

While a high degree of precision weighting is again a necessary feature of the model,
it is hard to see how that increased degree of precision weighting could determine
direction of ût. For the importance of an error (how much the system should
prioritise correcting for it relative to other errors), and manner that the system
should go about correcting for it (changing the model or changing the world) seem
to be two separate considerations that can, and o�en do, come apart. In principle, a
cognitive agent might place supreme importance on correcting for a proprioceptive
prediction error – it may believe that its future existence depends on it predicting
what is in its pocket (‘Is it a piece of putty shaped as a cube or shaped as a ball?’). But
no matter how highly it rates correcting for that error (e.g. gaining certainty that it
is shaped like a cube), it is still an open question whether the system reduces that
proprioceptive prediction error by revising the model or by changing the world. It
might attempt to gain certainty about the shape of the putty by trying to estimate the
current shape as accurately as possible or by forcing the putty into some arbitrary
shape that it has chosen to predict. A proprioceptive prediction error – no matter
what its degree of precision weighting – might be reduced in either way.

It is currently unclear how a predictive coding algorithm should encode direction
of ût. Friston, Schwartenbeck et al. (2013) suggest that one should ‘recode’ utilities
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(which have a desire-like ût) as probabilities.48 his would allow algorithms for
decision making – including those that guide motor control – to be interpreted
as a pure ‘inference’ over probabilities. All aspects of decision making could be
viewed as instances of approximate Bayesian inference over a single type of formal
state (over probabilities). Classical models of decision making tend to start from
the assumption that decision making is a process that operates over two formally
distinct states (credences and utilities). he objective of the process is typically
characterised as that of maximising expected subjective utility. Bayesian inference
counts as only one element in this process – that concerning belief ûxation or belief
update. It needs to be supplemented by, or embedded into, a larger account which
explains how the credences arrived at by Bayesian inference are combined with
utilities to generate action.49

While it is formally possible to recode utilities as probabilities, it is hard to see how
it solves the problem described above. he cognitive system would still need to keep
track of whether any particular probability so deûned is a belief-like one (a credence)
or a desire-like one (a recoded utility). he two have distinct functional roles within
the cognitive economy of the agent and they diòer in ways that go beyond any formal
similarities. A cognitive agent might have a low credence in a speciûc outcome
to which it also assigns a high utility (e.g. purchasing a winning lottery ticket); a
high credence in an outcome to which it assigns a low utility (e.g. purchasing a
losing lottery ticket); a high credence in an outcome to which it assigns high utility
(e.g. purchasing a winning ticket to a lottery that it has secretly rigged); and a low
credence in an outcome to which it assigns a low utility (e.g. purchasing a losing
ticket to a lottery that it has secretly rigged). Regardless of how one formalises the
relevant quantities (as probabilities or not), two independent degrees of freedom
are needed to capture the diòerence between how the system thinks the world is
and how it wishes the world to be. If both quantities are deûned as probabilities,
the system would need to traõc in two, materially distinct kinds of probability. But
exactly how these two kinds of probability should be encoded in the numerical
states of the ANN, and how the ANN should decide whether to minimise error via
active inference (motor activity) or passive inference (belief revision) are unclear.

Explaining direction of ût may require a full algorithmic-level account of the high-
level cognitive processes that lie between perception and motor control. One of

48More precisely, utilities should be encoded as log likelihoods. he utility of an outcome given
a predictive model, U(o ∣ m), should be represented by the log of some prior probability of the
outcome conditional on the model, lnP(o ∣ m). Encoding utilities as log probabilities preserves
the structure of the agent’s utility function, and so can preserve the underlying logic of decision
making (see Henriksen, 2020).

49For a summary of classical approaches to decision making, see Russell and Norvig (2010), Ch.
16.
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the intended functions of these processes is to allow belief-like and desire-like
states to combine in a rational way to produce action. hese processes should take
into account a wide, potentially unbounded, range of epistemic and pragmatic
considerations to determine the most appropriate action given the context and
whether that involves a motor response or a change to belief. However, a detailed
algorithmic-level account of high-level central reasoning processes is exactly what
ANN-based models currently do not provide.

7 Conclusion

his paper has focused on what predictive coding says at Marr’s algorithmic level.
he proposed algorithm consists in (i) a multi-layered, hierarchically structured
artiûcial neural network; (ii) a repeated duplex arrangement of prediction and error
units within each layer; (iii) each layer functioning so as tominimise prediction error
about the state of the layer below. Numerical states of the networkmay be interpreted,
in a further semantic step, as probabilistic representations and the manner in which
they are transformed as a version of approximate Bayesian inference. he algorithm
described in this paper is representative only of a deliberately simpliûed version
of predictive coding. One should regard it as just a stepping stone on the way to a
more elaborate proposal. However, it illustrates certain broad motifs – such as a
hierarchically structured ANN, a functional structure of repeated prediction and
error units – that one might expect to ûnd in some future, more sophisticated
algorithmic-level proposal.

Rao and Ballard (1999) proposed that a hierarchical predictive coding algorithm
should be used to model neural responses in the early visual system. Subsequently,
the algorithm has been claimed to have much wider applications. In its boldest form,
predictive coding claims that a hierarchical predictive coding algorithm governs
all aspects of neural cognitive processing. During cognition – which according to
predictive coding, aims to minimise sensory prediction error – the brain should be
assumed to be implementing a giant, hierarchically structured ANN.

As with predictive coding’s computational-level proposal, it is natural to won-
der what would happen if one were to trim the ambitions of predictive coding’s
algorithmic-level claim. Perhaps the ANN describes some computational meth-
ods used by the brain, but not all. As we saw with the computational-level claim,
the extent to which an advocate of predictive coding chooses to limit the scope of
their claim will proportionately decrease the view’s coding entitlement to provide
a grand, unifying theory of cognition. Nevertheless, even if it falls short of being
a truly universal theory of all cognitive processes, if it were to accurately model
many cognitive processes, or if it were to identify important features shared by
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aspects of cognition that are traditionally thought of as separate and unrelated (e.g.
perception and motor control), it could still justify a claim to provide a uniûcation
at the algorithmic level, albeit not a version of uniûcation that treats every cognitive
process as an instance of the same algorithm.50 Precisely how much of cognition
the algorithm might unify, and the exact form that uniûcation will take, is presently
unclear.
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