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Predictive coding – sometimes also known as ‘predictive processing’, ‘free energyminim-

isation’, or ‘prediction error minimisation’ – claims to offer a complete, unified theory of

cognition that stretches all the way from cellular biology to phenomenology. However,

the exact content of the view, and how it might achieve its ambitions, is not clear. This

series of articles examines predictive coding and attempts to identify its key commit-

ments and justification. The present article begins by focusing on possible confounds

with predictive coding: claims that are often identified with predictive coding, but

which are not predictive coding. These include the idea that the brain employs an

efficient scheme for encoding its incoming sensory signals; that perceptual experience

is shaped by prior beliefs; that cognition involves minimisation of prediction error;

that the brain is a probabilistic inference engine; and that the brain learns and employs

a generative model of the world. These ideas have garnered widespread support in

modern cognitive neuroscience, but it is important not to conflate them with predictive

coding.

1 Introduction

Predictive coding is a computational model of cognition. Like other computational

models, it attempts to explain human thought and behaviour in terms of compu-

tations performed by the brain. It differs from more traditional approaches in at

least three respects. First, it aspires to be comprehensive: it aims to explain, not

just one domain of human cognition, but all of it – perception,motor control, de-

cision making, planning, reasoning, attention, and so on. Second, it aims to unify:
rather than explain cognition in terms ofmany different kinds of computation, it

explains by appeal to a single, unified computation – one computational task and

one computational algorithm are claimed to underlie all aspects of cognition. Third,
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it aims to be complete: it offers not just part of the story about cognition, but one

that stretches all the way from the details of neuromodulator release to abstract

principles of rational action governing whole agents.¹

However, understanding precisely what predictive coding says, and whether it can

achieve these ambitions, is not straightforward. For one thing, the term ‘predictive

coding’ means different things to different people.² For another, important features

of the view,whatever its name, are liable to change or are underspecified in important

respects. In this article and those that follow it,my aim is to sketch what predictive

coding is, and how it might fulfil these ambitions.

I argue that predictive coding should be understood as a loose alliance of three

claims. These claims, each of which may be precisified or qualified in variety of

ways, aremade at Marr’s computational, algorithmic, and implementation levels of

description.³ At Marr’s computational level, the claim is that the computational

task facing the brain is to minimise sensory prediction error. At the algorithmic

level, the claim is that the algorithm by which our brain attempts to solve this task

involves the action of a hierarchical network of abstract prediction and error units.

This network may be viewed, in a further step, as running a variational algorithm

for approximate Bayesian inference. At Marr’s implementation level, the claim is

that the physical resources that implement the algorithm are primarily located in the

neocortex: anatomically distinct cell populations inside neocortical areas implement

distinct prediction and error units.

Each of these claims needs to be qualified in certain respects and supplemented by

further details. Each needs to be statedmore precisely and ideally associated with a

quantitativemathematical formalisation. A path needs to be forged from the claims

to supporting empirical evidence. Finally, oneneeds to show that the resultantmodel

delivers the kinds of benefits originally promised – a comprehensive, unifying, and

complete account of cognition. Different researchers within the predictive coding

community have different opinions about how to do this, and many details are

currently left open. This means that the exact commitments of predictive coding

are, to put it mildly, contentious. For these reasons, it is more accurate to think of

predictive coding as an ongoing research programme rather than amature theory

that can be fully stated now. The aim of the research programme is to articulate and

¹For examples of these broad claims, see Clark (2013); Clark (2016); Hohwy (2013); Friston

(2009); Friston (2010).

²Some authors use ‘predictive coding’ to refer to only one aspect of the view: for example,

to the efficient coding strategy described in section 2, or to the algorithm described in Section

2 of Sprevak (forthcoming[b]). Some authors call the overall research programme ‘predictive

processing’, ‘prediction error minimisation’, or ‘free energyminimisation’. In what follows, I use the

term ‘predictive coding’ to refer to the overall research programme.

³SeeMarr (1982), Ch. 1 for a description of these levels.
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defend some sophisticated – likely heavilymodified and precisified – descendent

of the three claims above. As with any such programme, themerits of predictive

coding should be judged in the round and, to some degree, prospectively: not just

in terms of the raw predictive power and confirmation of what it says now, but also

in terms of its future potential, and its ability to inspire and guide fruitful research.4

Before saying what predictive coding is, it is first helpful to say what it is not. In

this article, I outline five ideas that are often presented alongside predictive coding,

but which should be distinguished from it. In the three articles that follow, I focus

primarily on the positive content of the view. These explore predictive coding’s

claims at Marr’s computational, algorithmic, and implementation levels respectively

(Sprevak, forthcoming[a]; Sprevak, forthcoming[b]; Sprevak, forthcoming[c]). As

we will see, there are many ways in which its basic ideas may be elaborated and

refined. My strategy is to present what, in my opinion, are the ‘bare bones’ of the

approach. For readers new to this topic, I hope that this will provide you with a

scaffold on which to drape amore nuanced future understanding of the view.5

For the remainder of this article, I focus on five ideas that feature prominently in

expositions of predictive coding, but which should be distinguished from predictive

coding. These ideas are: (i) that the brain employs an efficient coding scheme; (ii)

that perception has top-down, expectation-driven effects; (iii) that cognition in-

volves minimisation of prediction error; (iv) that cognition is a form of probabilistic

inference; (v) that cognition makes use of generativemodels. All these ideas are

used by predictive coding but, I argue, they are also shared by a variety of other

computational approaches. They do not reflect – taken either singly or jointly –

what is distinctive about predictive coding’s research programme. If one wishes to

know what is special about predictive coding, these ideas, whatever their intrinsic

value, can function as potential distractors. A corollary of this is that evidence for

4The term ‘research programme’ is used here to indicate that the precise details, goals, and

conditions of correct application of a scientificmodel are often not to be decided in advance and are

liable to change over time. It is not meant to indicate commitment to a specific philosophical under-

standing of a scientific research programme (e.g. that of Lakatos (1978) or Laudan (1977)). In what

follows, I use the terms ‘framework’, ‘approach’, ‘view’, ‘account’, ‘theory’, and ‘model’ interchangeably

with ‘research programme’, with alternative uses flagged along the way.

5To help build that understanding, helpful reviews include Aitchison and Lengyel (2017); Friston

(2003); Friston (2005); Friston (2009); Friston (2010); Kanai et al. (2015); Keller andMrsci-Flogel

(2018). For reviews that focus on the describing themathematical and computational framework,

see Bogacz (2017); Gershman (2019); Jiang and Rao (2022); Spratling (2017); Sprevak and Smith

(2023). For reviews that focus on the possible neural implementation, see Bastos et al. (2012); Jiang

and Rao (2022); de Lange, Heilbron and Kok (2018); Kok and de Lange (2015). For reviews that

focus on philosophical issues and possible applications to existing problems in philosophy, see

Clark (2013); Clark (2016); Friston, Fortier and Friedman (2018); Hohwy (2013); Hohwy (2020);

Metzinger andWiese (2017); Roskies andWood (2017).
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predictive coding does not necessarily flow from evidence that supports thesemore

general ideas. Evidence for predictive coding should aim to selectively support pre-

dictive coding with respect to plausible contemporary rivals, not merely to confirm

ideas that are shared by a wide variety of other approaches.

The literature on predictive coding is vast. In what follows, I ignoremany interest-

ing developments, proposals, and applications. My description is also inevitably

partisan: there is too much disagreement within the primary literature to be able

to characterise the view in a wholly uncontroversial way. If you disagree with my

description, I hope that what I say at least provides a foil by which to triangulate

your own views.

In both the present article and those that follow, I only consider predictive coding as a

theory of subpersonal cognitive processing. I do not consider how its computational

model might be adapted or extended to account for personal-level thought or

conscious experience. Explaining conscious experience with predictive coding is a

relatively recent development. However, it is a project that assumes we have a prior

understanding of what predictive coding’s computational model is. That question is

the focus of this review.6

2 Efficient neural coding

A key idea thatpredictive coding employs is that the brain’s coding scheme for storing

and transmitting sensory information is, in a certain sense, efficient. The relevant

formof efficiency is quantified by the degree towhich the brain compresses incoming

sensory information (measured in terms of Shannon information theory). To

compress information, the sensory system should aim to transmit only what is ‘new’

or ‘unexpected’ or ‘unpredicted’ relative to its expectations. If the sensory system

were to encode certain assumptions about its incoming sensory data, these would

enable it to predict bits of that incoming sensory stream. This means that fewer bits

would need to be stored or transmitted inwards from the sensory boundary, yielding

a potential reduction in the costs of the brain physically storing and transmitting

that data. Themore accurately the brain’s internal assumptions reflect its incoming

sensory stream, the less informationwould need to be stored or transmitted inwards

from the sensory periphery. All that would need to be sent inwards would be an

error signal – what is new or unexpected – with respect to those predictions. A

similar idea underlies coding schemes that allow electronic computers to store and

transmit images and videos across the Internet (e.g. JPEG or MPEG).

6For examples ofwork that applies predictive coding’s computational model to explain conscious

experience, see Clark (2019); Clark (2023); Dolega and Dewhurst (2021); Hohwy (2012); Kirchhoff

and Kiverstein (2019); Seth (2017); Seth (2021).
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The notion that our brains use a sensory coding scheme that is efficient in this respect

dates back at least to the work of Attneave (1954) and Barlow (1961). They argued

that the brain uses a compressing, ‘redundancy reducing’ code for encoding sensory

information based partly on the grounds that neurons in the early visual system

have a limited physical dynamic range: the action potentials they send inwards to

cortical centres are precious and should not be squandered to send information

that those cortical centres already have.7 Predictive coding adopts the same basic

perspective, but elevates it to a universal design principle: not only the early stages

of vision, but every aspect of cognition, should be viewed as an attempt by the brain

to compress its incoming sensory data. To this, predictive coding adds a range of

further assumptions about (i) the algorithm by which the incoming sensory data

are compressed; (ii) how assumptions used for sensory compression are changed

during learning; (iii) where physically in the brain all this takes place.

Predictive coding has particular views about how compression of sensory signals

works – see (i)–(iii) above. It also adopts the rather extreme position that sensory

compression is the brain’s only goal. As Barlowmade clear in his later work, even

if one thinks that compressing incoming sensory data is one thing that the brain

does, it is not obvious that it is the only thing. In some circumstances, it may pay

the brain not to compress:

The point Attneave and I failed to appreciate is that the best way to code

information depends enormously on the use that is to bemade of it . . .

if you simply want to transmit information to another location, then

redundancy-reducing codes economizing channel capacity are what

you need . . . But the brain is not just a communication system, and we

now need to survey cases where compression is not the best way to

exploit statistical structure. (Barlow, 2001, p. 246).

One can appreciate Barlow’s point by considering what would count as ‘efficient’

coding for image data on a PC. If all one wishes to do is to transmit an image across

the Internet, then compressing it using a redundancy reducing code (e.g. JPEG)

might be a good solution, since it would reduce the number of physical signals

one would need to send. Similarly, if one only wishes to store the image on a hard

disk drive, then compressing it wouldmean that fewer physical resources would be

required for its storage.8 However, if one wishes to transform the image or perform

7See Simoncelli and Olshausen (2001); Sterling and Laughlin (2015); Stone (2018) for reviews of

efficient coding in the sensory system.

8Other coding schemes such as wavelet-based codes (Usevitch, 2001) or deep neural networks

(Bühlmann, 2022; Toderici et al., 2017) would outperform JPEG in these respects. However, these

schemes tend to impose even higher computing burdens than JPEG if one wishes to decode or

transform an image.
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an inference over it, then a redundancy reducing code like JPEGmay not be the best

or most efficient solution. Compressed data are often harder to work with. If you

ask a PC to rotate an image 23○ clockwise, themachine will generally not attempt

to execute this operation on a compressed encoding of the image data. Instead, it

will switch to an uncompressed version of the image (e.g. a two-dimensional array

of RGB values at X, Y pixel locations). Image processing algorithms defined over

uncompressed data tend to be shorter, simpler, and faster than those defined over

their more compressed counterparts.9 Uncompressed images have extra structure,

and that structure can make the job of an algorithm that operates on them easier,

even if it adds extra overhead to store or transmit.¹0

If all that matters to the brain in cognition are the costs of transmitting and storing

incoming sensory data, then it maymake sense for the brain to aim to maximally

compress that incoming sensory data. However, if speed, simplicity, and ease of

inferencematter, then it maymake sense to add or preserve redundant structure

within incoming sensory data.¹¹ Reducing redundancy is not the only possible

objective for a cognitive system that aims at efficient sensory coding.

It is common for contemporarywork on efficient coding to acknowledge this point.¹²

Predictive coding, in its strongest and purest form, adopts a rather extreme view: it

equates efficiency with sensory redundancy reduction, and it claims that the entire

brain (not just certain areas in the sensory cortex) is devoted to this task; it also

claims that the sensory compression is accomplished by a specific algorithm and

representational scheme. Although predictive coding employs the idea of efficient

coding, the general idea is not unique to predictive coding. Similarly, although

evidence for efficient sensory coding in, e.g. early stages in the visual cortex,may be

compatible with predictive coding, it may also be compatible with a range of other,

moremodest proposals about efficient coding in cognition.

9This is an instance of amore general trade-off in computer science between optimising for time

and optimising for space. Compressing data saves space, but generally has an adverse effect on the

time (number of computing cycles) required to do inference on that data to accomplish certain

tasks. You have experienced this trade-off any time you waited for a ‘.zip’ archive to uncompress

before being able to work on its contents.

¹0A related point is that uncompressed data are more resistant to noise during storage and

transmission.

¹¹Gardner-Medwin and Barlow (2001) list examples in which adding redundancy to sensory

signals produces faster andmore reliable inference over sensory data.

¹²For example, Simoncelli and Olshausen (2001) suggest that the nature of the downstream task

a cognitive system faces in a specific context should be considered when measuring the overall

efficiency of a coding scheme, not merely the degree of compression of the incoming sensory signal

(p. 1210).
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3 Top-down, expectation-driven effects in perception

Top-down, expectation-driven effects in perception are instances inwhich an agent’s

prior beliefs systematically affect that agent’s perceptual experience. Top-down,

expectation-driven effects are sometimes presented as a hallmark feature of pre-

dictive coding. Predictive coding’s computational model is thought to imply that

perception is top-down or expectation-laden: ‘What we perceive (or think we per-

ceive) is heavily determined by what we know’ (Clark, 2011). Evidence for top-down

effects in perception is also thought to somehow confirm predictive coding’s compu-

tational model: we should give higher credence to predictive coding’s computational

proposal based on observation of top-down effects in perception.¹³

However, the relationship between predictive coding and top-down, expectation-

driven effects in perception is more complex and less direct than this.

First, top-down effects in perception are standardly defined in terms of a relationship

between an agent’s personal-level states: what an agent believes affects their perceptual
experience.¹4 Predictive coding, at least in the first instance,makes a claim about

the agent’s subpersonal computational states and processes. The ‘top’ and ‘bottom’

in predictive coding’s computational model refer, as we will see, to subpersonal

computational states of the agent. ‘High-level’ neural representations (implemented

deep in the cortical hierarchy) are assumed to have a ‘top-down’ influence on ‘low-

level’ representations (implemented in the early sensory system). How this kind of

subpersonal ‘top-down effect’ relates to personal-level top-down effects observed in

psychology is presently unclear.

Onemight argue that, at aminimum, personal-level top-down effects require some
subpersonal information to flow from high-level cognitive centres to low-level

sensory systems. However, it is difficult to know what can be inferred from this

assumption regarding personal-level experience. Not every piece of subpersonal

information posited by predictive coding’s computational model features in the

contents of either personal-level belief or perceptual experience. Only a tiny fraction

of subpersonal information appears to be present at the personal level. For predict-

ive coding to say something specific about the existence or character of top-down

effects at the personal level, it would need to say which aspects of that subpersonal

information give rise towhich personal-level states (beliefs and perceptual contents).

¹³For examples of this kind of reasoning, see Clark (2013), p. 190; Lupyan (2015).

¹4See characterisations in Macpherson (2012); Firestone and Scholl (2016). One could also define

a ‘top-down effect’ in terms of how various high-level states in predictive coding’s subpersonal

computational model change the subject’s physically (non-intentionally) characterised behaviour

(e.g. physical button presses by a subject during a psychophysics experiment). Such a claim would
plausibly fall within the scope of predictive coding’s model, but its relationship to top-down effects

as standardly defined is not obvious. Thanks to Matteo Colombo for this point.
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These assumptions – which connect the subpersonal level to the personal level – are

currently not to be found anywherewithin predictive coding’s computational model.

Ideas about these connections have been proposed, but exactly how subpersonal

states of the computational model map onto personal-level beliefs and perceptual

experiences remains a highly speculativematter.¹5 Absent confidence in such as-

sumptions, however, it is simply unclear how predictive coding’s computational

architecture bears, or if it bears at all, on personal-level top-down effects observed

in psychology.¹6

Second, positing top-down subpersonal information flow inside a computational

model is not a characteristic that is unique to predictive coding. Almost any plausible

computational model of cognition is likely to claim that information flows both

‘upwards’ (from lower-level sensory systems to high-level cognitive centres) and

‘downwards’ (from high-level cognitive centres to lower-level sensory systems). As

IraHyman observed in his introduction to the reprinting of Neisser’s classic 1967

textbook: ‘Cognitive psychology has been and always will be an interaction of

bottom-up and top-down influences’.¹7 This could even be said of so-called ‘bottom-

up’ computational models, such as the account of vision proposed byMarr (1982).

Thosemodels might appear to ignore top-down processes, but this is not because

they hold that top-down influences do not exist in the brain or are unimportant,

but rather because they are not necessary to explain a particular phenomenon

of interest.¹8 Indeed, it has been for a long time standard practice in cognitive

science to invoke top-down information flow to account for endogenous attention,

semantic priming, and to explain how the brain handles ambiguity, noise, and

uncertainty in its sensory input.¹9 Themammalian brain contains a huge number

of ‘backward’ cortical connections which suggest that signals carried from cortical

centres to peripheral sensory areas have a significant computational role in cognitive

processing. Even if onewere to ignore these connections, Firestone and Scholl (2016)

observe that there aremany other causal routes by which high-level cognitive centres

should be expected to systematically affect processing in low-level sensory systems –

¹5For critical discussion of this point with respect to Seth (2021)’s proposals about personal-level

experience, see Sprevak (2022).

¹6See Macpherson (2017); Drayson (2017) for further development of this line of argument.

They suggest that predictive coding’s computational model is compatible with no top-down effects

occurring at the personal level at all.

¹7Neisser (2014), p. xvi.

¹8For example,Marr (1982): ‘. . . top-down information is sometimes used and necessary . . . The

interpretation of some images involves more complex factors as well as more straightforward visual

skills. This image [a black-and-white picture of a Dalmatian] devised by R. C. James may be one

example. Such images are not considered here.’ (pp. 100–101).

¹9See Gregory (1997); Poeppel and Bever (2010); Yuille and Kersten (2006). Firestone and Scholl

(2016) suggest that endogenous attention requires subpersonal top-down information flow inside a

computational model (p. 14).
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the decision to ‘shut one’s eyes’ causes one’s eyelids to close, which changes low-level

sensory inputs, systematically affecting the contents of states in subpersonal low-

level sensory systems, for example.²0 When advocates of predictive coding suggest

that their model has a special relationshipwith top-down, expectation-driven effects

observed at the personal level, a challenge they face is to explain why predictive

coding’s specific set of top-down computational pathways is uniquely or best suited

to explain these effects.

To be clear, predictive coding’s computational model is compatible with personal-

level top-down effects in perception occurring; it is also broadly suggestive that

such effects would occur. What is not clear is that it is better suited to account

for these effects than any number of other models that also incorporate subper-

sonal top-down information flow (e.g. other kinds of recurrent neural networks

or classical computational models with loops). For these reasons, it is not clear

how personal-level top-down effects is distinctively associated with, or selectively

confirms, predictive coding.

4 Minimising prediction error

It is common in contemporary artificial intelligence (AI) to characterise learning

and inference in terms of minimising prediction error. During learning, an AI

systemmight attempt to change its parameters to better predict its training data.

During inference, an AI systemmight search for values of its variables that would

result in it generating predictions that minimise prediction errors – that are as close

to ‘ground truth’ as possible.²¹ Different AI systems might differ in the types of data

they try to predict, themathematical model they use for prediction, or the way they

revise parameters of that model during learning.²² Prediction error might also be

measured in a number of ways. A common formalisation is mean-squared error –

the average of the squares of the differences between the predicted values and the

²0Dennett (1991) argues that these kinds of external ‘virtual wires’, which loop into the envir-

onment, can enable sophisticated forms of top-down information processing, including those

characteristic of rational thought (pp. 193–199).

²¹For example, see Bishop (2006), pp. 1–12 andHohwy (2013), pp. 42–46.

²²Note that a ‘prediction’ need not be about the future. A prediction is an estimate concerning

something that the system does not already know. In principle, a prediction might concern what

happened in the past, what is happening in the present, or what will happen in the future. For a

helpful review of the relevant notion of prediction, see de Lange,Heilbron and Kok (2018), p. 766,

Box 2 and Forster (2008).
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true values of the data.²³

The logical space of possible computational systems that aim to minimise their

prediction error is vast. One can get some idea of the size and diversity of that space

by opening up any current textbook onmachine learning or statistics.²4 Amaximally

simple example of a system that aims to minimise its prediction error would be one

that performs linear regression on its training data. Here,minimising prediction

error reduces to just fitting a straight-line mathematical model to the training

data and using that straight-line model to make predictions about unseen cases.

Learning consists in finding the value of two parameters (slope and y-intercept) that

would define a straight line that minimises mean-squared error over the training

data. Classical statistics contains many algorithms for finding those values (e.g., the

ordinary least squares algorithm). Deep neural networks providemore complicated

examples of computational systems that aim to minimise their prediction error.

Here, learning consists in finding the values of not just two, but millions or billions

of parameters. Algorithms like backpropagation are commonly used to find these

values. During inference, a deep neural network might execute a long sequence of

mathematical operations over many variables in an effort to yield an output that is

as close to the ground truth as possible.

Predictive coding suggests that the brain, likemany other computational systems,

aims to minimise a measure of prediction error. What distinguishes predictive

coding from other proposals is that it makes specific claims about the data,model,
and algorithm used in this task; a distinctive claim is also made about the role of
this instance of prediction error minimisation within the brain’s wider cognitive

economy.

Regarding the data, predictive coding claims that the brain aims to minimise pre-

diction error concerning incoming sensory signals. This should be distinguished

from other approaches that claim that the brain aims to minimise prediction error

concerning other forms of data, such as reward signals.²5 Themathematicalmodel

²³Strictly speaking, AI systems aim to minimise a cost function, which combines prediction error

with other factors. A common cost function is the prediction error plus the sum of the squares

of themodel’s parameters. The latter serves as regularisation term that penalises more complex

models. For discussion, see Russell and Norvig (2010), pp. 709–713.

²4For example, Bishop (2006); MacKay (2003); Barber (2012); Matloff (2017).

²5There are a wide range of computational models of learning and decision-making that attribute

the goal ofminimising prediction error over reward signals to the brain (Niv and Schoenbaum,

2008; Schultz, Dayan andMontague, 1997). Although thesemodels bear a family resemblance to

predictive coding, advocates of predictive coding are generally clear that the two approaches are

distinct (Friston, 2009). However, see Friston, Schwartenbeck et al. (2013); Schwartenbeck et al.

(2015) for an attempt to show that minimising reward prediction error can be reconceptualised as

minimising ameasure of expected free-energy that is also associated with sensory prediction error
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the brain uses to generate its predictions is encoded in an abstract hierarchical

network containing prediction and error units linked by weighted connections. This

network is similar to the connectionist networks found in deep learning, although

the behaviour of individual units and the overall topology of the network differs

from those commonly used in deep learning. The algorithm that adjusts the para-

meters of the network during learning is also different. Deep learning tends to use

some version of backpropagation; predictive coding suggests that the brain uses a

Hebbian learning algorithm.²6 Finally, a special role is accorded to prediction error

minimisation in cognition. Predictive coding holds that minimising prediction

error over sensory signals is not just one among many objectives undertaken by the

brain, but its only or fundamental objective.

It is common to find prediction errorminimisation occurring inside a computational

model of cognition. What marks out predictive coding as special is the claim that

cognition exclusively involves prediction error minimisation over a specific set of

data,with a specificmathematical model, and using a specific algorithm for learning

and inference. Evidence for prediction error minimisation occurring in the brain,

although it may be compatible with predictive coding, may also be compatible

with any number of other computational models that also employ prediction error

minimisation.

5 Cognition as a form of probabilistic inference

Brains receive noisy, incomplete, and sometimes contradictory information via their

sensory organs. They need to weigh this information rapidly and integrate it with

(sometimes conflicting) background knowledge in order to reach a decision and

generate behaviour. Probabilisticmodels of cognition provide a broad framework

by which to understand how brains do this. According to these models, brains

do not represent the world in purely categorical way (e.g. ‘the person facing me is

my father’), but instead represent multiple possibilities (e.g. ‘the person facing me

is my father, my uncle, his cousin, . . .’) along with some measure of uncertainty

regarding those outcomes.²7 Computational models typically formalise this by

ascribing mathematical subjective probability distributions to brains. These probab-

ility distributions measure the brain’s degree of confidence in a range of different

²6See Sprevak (forthcoming[b]), Section 2.3.

²7For examples, see Chater, Tenenbaum and Yuille (2006); Danks (2019).
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possibilities.²8 Cognitive processing is then modelled as a series of operations in

which one subjective probability distribution conditions, or updates, another. The

exact manner in which this happens may vary between different computational

models. In principle, cognitive processing maymaintain this probabilistic character

until the brain is forced to plump for a specific outcome in action (e.g. the agent is

required to respond ‘yes’/‘no’ in a forced-choice task).

A particularly influential example of this approach is the Bayesian brain hypothesis.²9
On this view, Bayes’ rule, or some approximation to it, is assumed to describe how

the brain combines and updates its subjective probability distributions.³0 Because

exact Bayesian inference is computationally intractable, advocates of the Bayesian

brain hypothesis generally assume that the brain implements some version of ap-

proximate Bayesian inference. Approximate Bayesian inference can be achieved in

a variety of ways, themost popular of which being sampling algorithms (which use

multiple categorical samples to create an empirical distribution that approximates

the true Bayesian posterior) and variational algorithms (which change the paramet-

ers of some simpler,more computationally tractable distribution in order to try to

find a posterior distribution that is close to the true Bayesian posterior).³¹ Both

forms of approximate Bayesian inference are common in AI andmachine learning.

Proponents of the Bayesian brain hypothesis do not agree about whether the brain

uses a sampling method, a variational method, or something else entirely.³²

Predictive coding is one example of a probabilisticmodel of cognition and an in-

²8The subjective probabilities in question are formally handled in a similar manner to subjective

probabilities inside classical formulations of Bayesianism – i.e. as degrees of belief or credences of

some reasoning agent (de Finetti, 1990; Ramsey, 1990). However, unlike in traditional treatments,

these subjective probabilities need not be ascribed to the entire agent; they may be ascribed to

subpersonal parts of the agent (e.g. to individual brain regions, neural populations, or single

neurons) (for example, see Deneve, 2008; Pouget et al., 2013). For discussion of how the concept of

subjective probability should be applied to subpersonal parts of agents, see Icard (2016); Rescorla

(2020).

²9Chater and Oaksford (2008); Knill and Pouget (2004).

³0Bayesian updating is not the only option for handling inference under uncertainty. Plenty of

rules and heuristics do not fit the Bayesian norms but still generate adaptive behaviour (Bowers

and Davis, 2012; Colombo, Elkin and Hartmann, 2021; Eberhardt and Danks, 2011; Rahnev and

Denison, 2018). Rahnev (2017) considers the possibility that brains do not store full probability

distributions, but only a few categorical samples or summary statistics (e.g. variance, skewness,

kurtosis) and use these partial measures to generate adaptive behaviour.

³¹For an introduction to sampling methods (e.g. Markov chain Monte Carlo methods or particle

filtering), see Bishop (2006), Ch. 11. For an introduction to variational methods, see Bishop (2006),

Ch. 10.

³²For exploration of the idea that the brain uses a sampling method, see Fiser et al. (2010);

Griffiths, Vul and Sanborn (2012); Hoyer andHyvärinen (2003); Moreno-Bote, Knill and Pouget

(2011); Sanborn and Chater (2016); Sanborn and Chater (2017). Predictive coding is an example of a

view that holds that the brain uses a variational method for approximate Bayesian inference.
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stance of the Bayesian brain hypothesis. Predictive coding identifies the task the

brain faces in cognition as that ofminimising sensory prediction error. If combined

with appropriate simplifying assumptions, this task can be shown to entail approx-

imate Bayesian inference.³³ The numerical values that feature in predictive coding’s

artificial neural network can be interpreted as parameters of subjective probability

distributions (namely, as themeans and variances of Gaussian distributions). Pre-

dictive coding’s algorithm can be interpreted as a particular version of variational

Bayesian inference.³4 Predictive coding proposes that these numerical parameters,

and hence the subjective probability distributions manipulated in cognition, are

encoded in the average firing rates of neural populations of layers in the neocortex,

and themanner in which these subjective probability distributions condition one

another in inference is encoded in the strength of the synaptic connections between

distinct neocortical areas.³5

Someonemight endorse the idea that the brain engages in probabilistic inference, or

even the Bayesian brain hypothesis, but reject some or all of these further assump-

tions. For example, someone might not accept that a single probabilistic model

underlies every aspect of cognition, or that the subjective probability distributions in

the brain are alwaysGaussian, or that the brain uses the specific version of variational

Bayesian inference proposed by predictive coding, or that the brain’s subjective

probability distributions are encoded in the neocortex.³6 Predictive coding is an

example of a probabilisticmodel of cognition, but there aremany possible alternat-

ive probabilisticmodels. Endorsement of, or evidence for, a probabilistic approach

to cognition cannot straightforwardly be read as endorsement of, or evidence for,

predictive coding as opposed to any number of other views.

6 Cognition uses a generativemodel

A generativemodel is a special kind of representation that describes how observa-

tions are produced by unobserved (‘latent’) variables in the world. If a generative

model were supplied with the information that your best friend enters the room, it

might predict which sights, sounds, smells you would experience. At the highest

level of abstraction, you might conceive of a generativemodel as a black box that

takes, as input, a hidden state of the world and that yields, as output, the sensory

signals that would be likely to be observed. It is widely thought that generative

models – and in particular, probabilistic generativemodels – play an important role

³³Sprevak (forthcoming[a]), Section 8; Sprevak and Smith (2023).

³4Sprevak (forthcoming[b]), Section 5.

³5Sprevak (forthcoming[c]), Section 3.

³6Aitchison and Lengyel (2017) consider how predictive coding’s proposals might be changed if its

algorithm for variational Bayesian inferencewere replacedwith a sampling algorithm (pp. 223–224).
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in cognition. This is for at least three reasons.

First, a generativemodel could help the brain to distinguish between changes to

its sensory data that are self-generated and externally generated. When our eyes

move, our sensory input changes. How does the brain know which changes are due

to movement of our sensory organs and which are due to movement of external

objects in the environment? von Helmholtz (1867) proposed that our brain makes

a copy of its upcoming motor plans and uses this copy (the ‘efference copy’) to

predict how its plans are likely to affect incoming sensory data. A generativemodel

(the ‘forwardmotor model’) predicts the likely sensory consequences of a planned

movement (e.g. how sensory data would be likely to change if the eyeballs rotate).

These predictions are then fed back to the sensory system and ‘subtracted away’

from incoming sensory data. This would allow the brain to compensate for changes

its own movement introduces into its sensory data stream.³7

Second, a generativemodel would help the brain to overcome some of the inherent

latency, noise, and gaps in its sensory data. When you execute a complex, rapid

motion – e.g. a tennis serve – your brain needs to have accurate, low-latency sensory

feedback. It needs to know where your limbs are, how its motor plan is unfolding,

whether any unexpected resistance is being met, and how external objects (like

the tennis ball) aremoving. Due to the limits of the brain’s physical hardware, this

sensory feedback is likely to arrive late, with gaps, and with noise. A generative

model would help the brain to alleviate these problems by regulating its motor

control based, not on actual sensory feedback, but on expected sensory feedback.

When the incoming sensory data do arrive, the brain could then integrate them

into its predictions in a way that takes into account any background information

that it has about bias, noise, and uncertainty in that sensory signal. Franklin and

Wolpert (2011) argue that this would allow the brain to make ‘optimal’ use of its

sensory input during motor control – optimal in the sense that the brain would

make use of all its available information.³8

Third, if a generative model takes a probabilistic form, it could, in principle be,

inverted to produce a discriminative model.³9 Discriminativemodels are of obvi-

ous utility in many areas of cognition. A discriminativemodel tells the cognitive

system, given some sensory signal, which state(s) of the world aremost likely to

³7Keller andMrsci-Flogel (2018), pp. 424–425. Blakemore, Frith andWolpert (1999) use amodel

of this kind to explain why it is difficult to tickle yourself.

³8Grush (2004); Körding andWolpert (2004); Körding andWolpert (2006); Rescorla (2018).

³9Bayes’ theorem is P(Y ∣ X) = P(Y ∣ X)P(Y)/P(X), and follows from standard axioms

and definitions of probability theory. Bayes’ rule (referenced in Section 5) says that an agent’s

subjective probabilities should be updated using Bayesian conditionalisation, Pt+1(Y) = Pt(Y ∣ X);
its justification does not follow from the axioms of probability (Strevens, 2017).
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be responsible for its observations.40 Discriminativemodels are needed in visual

perception, object categorisation, speech recognition, detection of causal relations,

and social cognition. A discriminative model and a generative model facilitate

inference in opposite directions: whereas a discriminativemodel tells the cognitive

system how to make the inferential leap from sensory data to the value of latent

unobserved variables, a generativemodel tells the cognitive system how to make the

inferential leap from the value of latent variables to sensory observations. The latter

form of inferencemight not initially appear to be useful, but if the system applies

Bayes’ theorem, a generative model can be used to infer a discriminative model.

Moreover, this may be a computationally attractive strategy because generative

models are often easier to learn,more compact to represent, and less liable to break

when background conditions change.4¹ In AI, a common strategy for tackling a

discriminative problem is to first learn a generativemodel of the domain and then

invert it using Bayes’ theorem. This strategy is frequently suggested as the way in

which the brain tackles discriminative problems in certain domains of cognition.4²

A generative model is a common feature in a modern computational model of

cognition. Its content and structure, themethods by which it is updated, and how

it might be physically implemented in the brain,might be filled out in many ways,

including ways that depart substantially from those suggested by predictive coding.

In the context of predictive coding, a single probabilistic generativemodel is claimed

to be employed across all domains of cognition. This generativemodel is claimed to

have a specific hierarchical structure, content, and to be implemented in a specific

way in the brain.

Someonemight accept that generativemodels play a role in cognition, but reject

these further assumptions. For example, they might hold that multiple distinct

generativemodels exist in the brain in relative functional isolation from each other

– e.g., theremight be a domain-specific generativemodel dedicated to motor con-

40A discriminativemodel estimates the probability of a latent variable, Y , given an observation, x,
i.e. P(Y ∣ X = x). A generativemodel is defined either as the likelihood function, i.e. the probability

of an observation, X, given some hidden state of the world, y, P(X ∣ Y = y); or, as the full joint

probability distribution, P(X ,Y). The difference between these rarelymatters in practice as the

joint probability distribution equals the product of the likelihood and the system’s priors over those

unobserved states, P(X ,Y) = P(X ∣ Y)P(Y), and both likelihood and priors need to be known to

invert themodel under Bayes’ theorem.

4¹The reasons why generativemodels provide these advantages are complex and depend partly

on the contingent way our world is structured. For a brief intuitive explanation, see Russell and

Norvig (2010), pp. 497, 516–517.

4²See Bishop (2006), Ch. 4 on creating discriminative classifiers using generativemodels. See

Chater and Manning (2006); Kriegeskorte (2015); Poeppel and Bever (2010); Tenenbaum et al.

(2011); Yuille and Kersten (2006) for various proposals about how the brain uses generativemodels

to answer discriminative queries in cognition.
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trol.4³ They might hold that the brain does not use a generative model to solve

every inference problem – the brain might sometimes attempt to learn and use

a discriminative model of a domain directly, or employ some other, non-model-

based strategy to reach a decision.44 Theymight disagree about the content of the

generative model or how the generative model is physically implemented in the

brain.45

Generativemodels appear in many computational accounts of cognition. Predictive

coding employs the idea, but that idea is not unique to predictive coding. The

proposal that the brain uses a generativemodel should not simply be equated with

predictive coding and one should not assume that empirical evidence that favours

the hypothesis that the brain employs a generative model is also evidence that

supports predictive coding’s specific proposal about the character and role of a

generativemodel in cognition.

7 Conclusion

The aim of this paper is to separate five influential ideas about cognition from

predictive coding. Many philosophers first encounter these ideas in the context of

predictive coding. However, it is important to recognise that those ideas exist in a

broader intellectual landscape and they are employed by approaches thathave little or

nothing to dowith predictive coding. Accepting one or more of these ideas does not

constitute an endorsement of predictive coding. Similarly, evidence that supports

one or more of the ideas should not be taken as evidence that unambiguously

supports predictive coding. If one wants to understand the distinctive content

of predictive coding, or to evaluate the empirical evidence for it, one needs to

disentangle it from these other ideas.

Of course, there is nothing to stop someone defining thewords ‘predictive coding’ to

refer to some broad, non-specific synthesis of these five ideas. On such a deflationary

reading, one could say, without fear of contradiction, that predictive coding is

alreadywidely accepted and empirically confirmed. However, there are good reasons

to resist such amove. Advocates of predictive coding are keen to stress that their

view is both novel and that it faces genuine jeopardy with respect to future evidence.

If these claims are to be taken seriously, one would need to show (i) that the view

4³Wolpert, Ghahramani and Flanagan (2001); Grush (2004) suggest this. They also suggest that

this motor model is not implemented in the neocortex but in the cerebellum.

44Ng and Jordan (2002) consider conditions under which it is more efficient to learn a discrimin-

ativemodel of a domain directly than learn a generativemodel first and then invert it. Raina et al.

(2003); Lasserre, Bishop andMinka (2006) examine a range of hybrid discriminative-generative

approaches to inference.

45See Sprevak (forthcoming[b]), Section 2.5; Sprevak (forthcoming[c]), Section 6.
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departs from plausible rivals; and (ii) that it is not so anodyne as to be consistent

with any likely empirical evidence. To this end, Clark warns against interpreting

predictive coding as an ‘extremely broad vision’; it should be interpreted as a ‘specific

proposal’ (Clark, 2016, p. 10). Hohwy observes that there is often an ambiguity

which renders presentations of predictive coding ‘both mainstream and utterly

controversial’ (Hohwy, 2013, p. 7). He argues that in order for it to meaningfully

make contact with empirical evidence, it should be understood as a specific, detailed

proposal (Hohwy, 2013, pp. 7–8).46

What is that specific, detailed version of predictive coding? In what follows, I argue

thatwhat distinguishes predictive coding from contemporary rivals is a combination

of three claims, each of which may be precisified or qualified in various ways. These

claims concern how cognition works at Marr’s computational, algorithmic, and
implementation levels.

It is worth tempering what follows with a cautionary note. As alreadymentioned,

the specific, detailed content of predictive coding is in no way a settled matter.

Researchers disagree about which features of the view are essential, whether the

model should be applied to all domains of cognition, whether the computational,

algorithmic, and implementation level claims should be combined, and the exact

form each of these claims should take. Cutting across this disagreement and un-

certainty, however, is a set of ideas that has inspired many researchers: a simple,

bold, and unifying picture of themind, its abstract computational structure, and its

physical implementation. This somewhat idealised version of predictive coding will

be the focus of the next three papers.
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