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What counts as a philosophical issue in computational cognitive science? This chapter

briefly reviews possible answers before focusing on a specific subset of philosophical

issues. These surround challenges that have been raised by philosophers regarding

the scope of computational models of cognition. The arguments suggest that there

are aspects of human cognition that may, for various reasons, resist explanation or

description in terms of computation. The primary targets of these ‘no go’ arguments

have been semantic content, phenomenal consciousness, and central reasoning. This

chapter reviews the arguments and considers possible replies. It concludes by high-

lighting the differences between the arguments, their limitations, and how they might

contribute to the wider project of estimating the value of ongoing research programmes

in computational cognitive science.

1 Introduction

In 1962, Wilfred Sellars wrote: ‘The aim of philosophy, abstractly formulated, is to

understand how things in the broadest possible sense of the termhang together in the

broadest possible sense of the term’ (Sellars, 1962, p. 35). On this view, philosophical

issues are marked out not by having some uniquely philosophical subject matter,

but in terms of the overall scope of the enquiry. When one turns to philosophical

issues, what one is doing is taking a step back from some of the details of the science

and considering how matters hang together relative to the broad ambitions and

goals that motivated the scientific enquiry in the first place. In the case of the

computational cognitive sciences, this may involve asking such questions as: Are
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there aspects of cognition or behaviour that are not amenable to computational

modelling? How do distinct computational models of cognition and behaviour

fit together to tell a coherent story about cognition and behaviour? What exactly

does a specific computational model tell (or fail to tell) us about cognition and

behaviour? What distinguishes computational models from alternative approaches

to modelling cognition and behaviour? How does a computational model connect

to, and help to answer, our pre-theoretical questions about what minds are and how

they work?

Progress in answering these questions may come from any or all sides. It would be

a mistake to think that philosophical issues are somehow only within the purview

of academic philosophers. Anyone who takes computational modelling seriously

as an attempt to study cognition is likely to want to know the answers to these

questions and is also liable to be able to contribute to the project of answering

them. What philosophers bring to this joint project is a set of conceptual tools

and approaches that have been developed in other domains to address structurally

similar issues. They also have the luxury of being allowed to think and write about

the big questions.

Sellars had a relatively narrow conception of what it meant to understand how things

hang together. He interpreted this as an attempt to reconcile two separate images that

we have of how theworldworks: the scientific image (which describes the posits of the

natural sciences – cells, molecules, atoms, forces, etc.) and themanifest image (which
describes the posits of human common-sense understanding of the world – persons,

thoughts, feelings, ideas, etc.) (Sellars, 1962). This chapter adopts a somewhat looser

interpretation of the project. Models in the computational cognitive sciences are

often partial, provisional, and selected from many possible alternatives that are also

consistent with the data. It would be misleading to think that current computational

cognitive science contains a single, coherent account that is ‘the’ scientific image

of cognition. Similar concerns could also be raised about our manifest image

of the world in light of observations of cross-cultural differences in human folk

understanding and conceptualisations of the world (Barrett, 2020; Henrich, Heine

and Norenzayan, 2010; Nisbett, 2003). The view adopted in this chapter is that the

philosopher’s goal is to understand how the many (and varied) current approaches

to computational modelling of cognition hang together, both with each other, with

work in the other sciences (including neuroscience, cellular biology, evolutionary

biology, and the social sciences), and with our various pre-theoretical folk questions

and insights regarding themind. There is no prior commitment here to a single, well-

defined scientific image or manifest image, but rather the ambition to understand

how the various perspectives we have on cognition and behaviour cohere and allow

us to understand what minds are and how they work (Sprevak, 2016).
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Under this broad heading, there is a huge range of work. This includes consideration

of how to interpret the terms of specific computational models – about which

parameters one should be a ‘realist’ or an ‘instrumentalist’ (Colombo and Seriès,

2012; Rescorla, 2016); how to make sense of theoretical concepts that appear across

multiple models, like the notion of a cognitive ‘module’ (Carruthers, 2006; Samuels,

1998); analysis and formalisation of general features of experimental methodology

in computational neuroscience (Glymour, 2001; Machery, 2013); identification of

differences between computational approaches and rival approaches to modelling

cognition (Eliasmith, 2003; van Gelder, 1995); consideration of how techniques

in machine learning and AI might inform work in computational neuroscience

(Buckner, 2021; Sullivan, 2019); interpretation of experimental results that function

as evidence for specific computational models (Apperly and Butterfill, 2009; Block,

2007; Shea and Bayne, 2010); and consideration of how computational models

of cognition connect to wider questions about the nature of the human mind,

its subjective experiences, its evolutionary history, and the kinds of social and

technological structures that it builds (Clark, 2016; Dennett, 2017; Godfrey-Smith,

2016; Sterelny, 2003).

The primary focus here will, by necessity, be narrower than the full extent of issues

within this diverse intellectual landscape. This chapter focuses on challenges raised

to computational modelling that arise from philosophical work on the nature of

cognition and consciousness.

1.1 Overview of chapter

When building a computational model in the cognitive sciences, researchers gen-

erally aim to build a model of some prescribed subdomain within cognition or

behaviour (e.g. of face recognition, cheater detection, word segmentation, or depth

perception). Splitting up human cognition into various smaller domains raises

questions about how one should do this. This is the problem of how one should

individuate our cognitive capacities and overt behaviour (M. L. Anderson, 2014; Bar-

rett and Kurzban, 2006; Machery, forthcoming). It also raises questions about how

the separate models of individual cognitive subdomains that one hopes to obtain

will subsequently be woven together to create a coherent, integrated understanding

of cognition. This concerns the issue of how one should unifymodels of distinct

aspects of cognition (Colombo and Hartmann, 2017; Danks, 2014; Eliasmith, 2013).

This chapter focuses on a set of issues that are related, but posterior, to the two

just mentioned. These concern possible gaps left by this strategy for modelling

cognition. If this strategy were in an ideal world to run to completion, would there

be any aspects of cognition or behaviour that would be missing from the final

picture? Are there any aspects of cognition for which we should not expect to obtain
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a computational model? Are there cognitive domains that are, for some reason,

‘no go’ areas for computational modelling? The chapter examines three possible

candidates: semantic content (Section 2), phenomenal consciousness (Section 3), and

central reasoning (Section 4). In each case, philosophers have argued that there are

good reasons to believe that we cannot obtain an adequate computational model of

the domain in question.

These ‘no go’ arguments may be subdivided further into in principle and in practice
arguments. In principle arguments aim to show that it is impossible for any computa-

tional model to account for the cognitive capacity in question. In practice arguments

are weaker. They aim only to show that, given our current state of knowledge, we

should not expect to discover such a model – an adequate modelmight exist, but

we should not expect to find it, at least in the foreseeable future.

2 Semantic content – Searle’s Chinese room argument

John Searle’s Chinese room argument is one of the oldest and most notorious ‘no go’

arguments concerning computational modelling of cognition. The precise nature

of its intended target has been liable to shift between different presentations of the

argument. Searle has claimed in various contexts that the argument shows that

understanding, semantic content, intentionality, and consciousness cannot adequately

be captured by a computational model (according to him, all these properties are

linked, see Searle, 1992, pp. 127–197). In his original formulation, Searle’s target

was understanding, and specifically our ability to understand simple stories. He

considered whether a computational model would adequately be able to account for

this cognitive capacity. More precisely, he considered whether such a model would

be able to explain the difference between understanding and not understanding

a simple story (Searle, 1980; cf. models of understanding in Schank and Abelson,

1977; Winograd, 1972).

2.1 The Chinese room argument

Searle’s argument consisted in a thought experiment concerning implementation

of the computation. Imagine a monolingual English speaker inside a room with

a rule-book and sheets of paper. The rule-book contains instructions in English

on what to do if presented with Chinese symbols. The instructions might take the

form: ‘If you see Chinese symbol X on one sheet of paper and Chinese symbol Y

on another, then write down Chinese symbol Z on a third sheet of paper’. Pieces of

paper with Chinese writing are passed into the room and the person inside follows

the rules and passes pieces of paper out. Chinese speakers outside the room label the

sheets that are passed in ‘story’ and ‘questions’, respectively, and the sheets that come
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out ‘answers to questions’. Imagine that the rule-book is as sophisticated as you like,

and certainly sophisticated enough that the responses that the person inside the

room gives are indistinguishable from those of a native Chinese speaker. Does the

person inside the room thereby understand Chinese? Searle claims that they do not

(for discussion of the reliability of his intuition here, see Block, 1980; Maudlin, 1989;

Wakefield, 2003).

Searle observes that the Chinese room is a computer, and he identifies the rule-book

with the (symbolic) computation that it performs. He then reminds us that the

thought experiment does not depend on the particular rule-book used: it does not

matter how sophisticated the rule-book, the person inside the room would still

be shuffling Chinese symbols without understanding what they mean. Since any

symbolic computational process can be described by some rule-book, the thought

experiment shows that the person inside the Chinese room will not understand the

meaning of the Chinese expressions they manipulate no matter which symbolic

computation they perform. Therefore, we can conclude that the performance of a

symbolic computation is insufficient, by itself, to account for the difference between

the system performing the computation understanding and not understanding what

the Chinese expressions mean. Searle infers from this that any attempt to model

understanding purely in terms of a formal, symbolic computation is doomed to fail-

ure. According to him, the reason why is that a formal computational model cannot

induce semantic properties, which are essential to accounting for a semantically

laden cognitive process like understanding (Searle, 1980, p. 422).

2.2 The problem of semantic content

Many objections have been raised to Searle’s Chinese room argument (for a sum-

mary, see Cole, 2020). However, it is notable that despite the argument’s many

defects, the main conclusion that Searle drew has been left largely unchallenged

by subsequent attacks. This is that manipulation of formal symbols is insufficient

to generate the semantic properties associated with cognitive processes like under-

standing. In Searle’s terms, the Chinese room thought experiment, whatever its

specific shortcomings, is an illustration of a valid general principle that ‘syntax is

not sufficient for semantics’ (Searle, 1984). Note that ‘syntax’ here does not refer

to the static grammatical properties of symbols or well-formedness of linguistic

expressions, but refers to the algorithmic rules by which symbolic expressions are

manipulated or transformed during a computation. ‘Semantics’ refers specifically

to the denotational aspects of the meaning associated with symbolic expressions –

their intentional properties (i.e. what they refer to in the world).

Searle is not alone in making this claim. Putnam (1981) argued that manipulating

symbols (mere ‘syntactic play’) cannot determine what a computation’s symbols refer
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to, or whether they carry any referential semantic content at all (pp. 10–11). Burge

(1986), building on earlier work by Putnam and himself on referring terms in natural

language, noted that a physical duplicate of a computer placed in a different physical

environment might undergo exactly the same formal transitions, but have different

meaning attached to its symbolic expressions based on its relationship to different

environmental properties. Fodor (1978) described two physically identical devices

that undergo the same symbol-shuffling processes, one of which runs a simulation of

the Six-DayWar (with its symbols referring to tank divisions, jet planes, and infantry

units) and the other runs a simulation of a chess game (with its symbols referring to

knights, bishops, and pawns). Harnad (1990) argued that all computational models

based on symbol processing face a ‘symbol grounding’ problem: although some

of their symbols might have their semantic content determined by their formal

relationship to other symbols, that sort of process has to bottom out somewhere

with symbolic expressions that have their meaning determined in some other way

(e.g. by causal, non-formal relationships to external objects in the environment in

perception or motor control).

These considerations are also not confined to symbolic computational models of

cognition. Similar observations could be made about computational models that

are defined over numerical values or over probabilities. Consider artificial neural

networks. These computational models consist in collections of abstract nodes and

connections that chain together long sequences of mathematical operations on nu-

merical activation values or connection weights (adding, multiplying, thresholding

values). What do these numerical activation values or connection weights mean?

How do they relate to distal properties or objects in the environment? As outside

observers, we might interpret numerical values inside an artificial neural network as

referring to certain things (just as, in a similar fashion, we might interpret certain

symbolic expressions in a classical, symbolic computation as referring to certain

things). Independent of our interpreting attitudes, however, the mathematical rules

that define an artificial neural network do not fix this semantic content. The rules

associated with an artificial neural network describe how numerical values are

transformed during a computation (during inference or learning), but they do not

say what those numbers (either individually or taken in combination) represent

in the world. Numerical rules no more imbue an artificial neural network with

semantic content than do the symbolic rules that operate over expressions for a clas-

sical, symbolic computation (cf. Searle, 1990). Computational models that operate

over probabilities or probability distributions face a similar kind of problem. These

models are normally defined in terms of operations on probability distributions

(understood as ensembles of numerical values that satisfy the requirements for a

measure of probability). These distributions might be interpreted by us as external

observers as probabilities of certain events occurring, but the mathematical rules
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governing the transformation of these distributions do not usually, by themselves,

determine what those distal events are.

It is worth emphasising that there is no suggestion here that computational and

semantic aspects of cognition are wholly independent. It is likely that some symbolic

expressions get their meaning fixed via their formal computational role (plausibly,

this is the case for expressions that represent logical connectives like AND and OR).

What is being claimed is that not all semantic content can be determined in this

way, by formal computational role. An adequate account of semantic aspects of

cognition will need to include not only formal relationships among computational

states, but also non-formal relationships between those computational states and

distal states in the external environment (for discussion of this point in relation to

procedural semantics or conceptual-role semantics, see Block, 1986; Harman, 1987;

Johnson-Laird, 1978).

2.3 Theories of content

A lesson that philosophers have absorbed from this is that a computational model

will need to be supplemented by another kind of model in order to adequately

account for cognition’s semantic properties. The project of modelling cognition

should correspondingly be seen as possessing at least two distinct branches. One

branch consists in describing the formal computational transitions or functions

associated with a cognitive process. The other branch connects the abstract symbols

or numerical values described in the first branch to distal objects in the environ-

ment via semantic relations (see Chalmers, 2012, pp. 334–335). This two-pronged

approach is most clearly laid out in the writings of Jerry Fodor. Fodor argued that

one should sharply distinguish between one’s computational theory (which describes

the dynamics of abstract computational vehicles) and one’s theory of content (which
describes how those vehicles get associated with specific distal representational

content). It would be a mistake to think that one’s computational theory can de-

termine semantic properties or vice versa (see Fodor, 1998, pp. 9–12). (Fodor (1980)

makes this observation in his response to the Chinese room argument, essentially

conceding that Searle’s conclusion about pure syntax is correct but obvious.)

What does a theory of content look like? Fodor argued that a good theory of

content should try to answer two questions about human cognition: (S1) How do

its computational states get their semantic properties? (S2) Which specific semantic

contents do they have? Fodor also suggested that a theory of content suitable for

fulfilling the explanatory ambitions of computational cognitive science should be

naturalistic. What this last condition means is that the answers a theory of content

gives to questions S1 or S2 should not employ semantic or intentional concepts. A

theory of content should explain how semantic content in cognition arises, and how
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specific semantic contents get determined, in terms of the kinds of non-semantic

properties and processes that typically feature in the natural sciences (e.g. physical,

causal processes that occur inside the brain or the environment). A theory of content

should not attempt to answer S1 or S2 by, for example, appealing to the semantic

or mental properties of external observers or the intentional mental states of the

subject themselves (Fodor, 1990, p. 32; Loewer, 2017).

Fodor developed his own naturalistic theory of content, which he called the ‘asym-

metric dependency theory’. This theory claimed that semantic content in cognition

is determined by a complex series of law-like relationships obtaining between cur-

rent environmental stimuli and formal symbols inside the cognitive agent (Fodor,

1990). In contrast, teleological theories of content attempt to naturalise content by

appeal to conditions that were rewarded during past learning, or that were selected

for in the cognitive agent’s evolutionary history (Dretske, 1995; Millikan, 2004;

Papineau, 1987; Ryder, 2004). Use-based theories of content attempt to naturalise

content by appeal to isomorphisms between multiple computational states in the

cognitive agent and states of the world, claiming that their structural correspond-

ence accounts for how the computational states represent (Ramsey, 2007; Shagrir,

2012; Swoyer, 1991). Information-theoretic theories of content attempt to naturalise

content by appeal to Shannon information (Dretske, 1981); recent variants of this

approach propose that semantic content is determined by whichever distal states

maximise mutual information with an internal computational state (Isaac, 2019;

Skyrms, 2010; Usher, 2001) – this echoes methods used by external observers in

cognitive neuroscience to assign representational content to neural responses in

the sensory or motor systems (Eliasmith, 2005; Rolls and Treves, 2011; Usher, 2001).

Shea (2018) provides a powerful naturalistic theory of content that weaves together

elements of all the approaches above and suggests that naturalistic semantic content

is determined by different types of condition in different contexts.

No naturalistic theory of content has yet proved entirely adequate, and natural-

ising content remains more of an aspiration than an attained solution. Among the

challenges faced by current approaches are allowing for the possibility of misrep-

resentation; avoiding introducing unacceptably large amounts of indeterminacy in

cognitive semantic content; and providing a sufficiently general theory of cognitive

semantic content that will cover not only the representations involved in percep-

tion and motor control but also more abstract representations like DEMOCRACY,

TIMETABLE, and QUARK (see Adams and Aizawa, 2021; Neander and Schulte,

2021; Shea, 2013).

Some philosophers have suggested the need for a different approach to explaining

semantic content in the computational cognitive sciences. Egan (2014) argues that

we should assume, at least as a working hypothesis, that cognitive semantic con-
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tent cannot be naturalised. This is not because the semantic content in question

is determined by some magical, non-naturalistic means, but because the way in

which we ascribe semantic content to formal computational models is an inherently

messy matter that is influenced by endless, unsystematisable pragmatic concerns

(Chomsky, 1995; Egan, 2003). Semantic content determination is just not the sort

of subject matter that lends itself to description by any concise non-intentional

theory – one is unlikely to find a naturalistic theory of semantic content for sim-

ilar reasons that one is unlikely to find a concise non-intentional theory of jokes,

excuses, or anecdotes. Egan suggests that pragmatic ascription of semantic content

to computational models nevertheless plays a residual role in scientific explanation

by functioning as an ‘intentional gloss’ that relates formal computational models to

our informal, non-scientific descriptions of behavioural success and failure (Egan,

2010).

A different approach to Egan’s suggests that ascriptions of semantic content to

computational models should be treated as a kind of idealisation or fiction within

computational cognitive science (Chirimuuta, forthcoming; Coelho Mollo, 2021;

Sprevak, 2013). This builds on a broader trend of work in philosophy of science

that emphasises the value of idealisations and fictions in all domains of scientific

modelling, from particle physics to climate science. Idealisations and fictions should

be understood not necessarily as defects in a model, but as potentially valuable

compromises that provide benefits with respect to understanding, prediction, and

control that would be unavailable from a scientific model that is restricted to literal

truth telling (Elgin, 2017; Morrison, 2014; Potochnik, 2017).

While philosophers do not agree about how to answer S1 and S2, there is near con-

sensus that a purely computational theory would not be adequate. A computational

model of cognition must be supplemented by something else – a naturalistic theory

of content, an intentional gloss, or a reinterpretation of scientific practice – that

explains how the (symbolic or numerical) states subject to computational rules

gain their semantic content. Moreover, this is widely assumed to be an in principle
limitation to what a computational model of cognition can provide. It is not a

shortcoming that can be remedied by moving to a new computational model or one

with more sophisticated formal rules.

2.4 Content and physical computation

The preceding discussion operated under the assumption that a computational

model is defined exclusively in terms of formal rules (whether those be symbolic or

numerical). This fits with one way in which computational models are discussed in

the sciences. Mathematicians, formal linguists, and theoretical computer scientists

often define a computational model as a purely abstract, notional entity (e.g. a set-
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theoretic construction such as a Turing machine, Boolos, Burgess and Jeffrey, 2002).

However, researchers in the applied sciences and in engineering often talk about

their computational models in a different way. In these contexts, a computational

model is often also tied to its implementation in a particular physical system. Part

of a researcher’s intention in proposing such a model is to suggest that the formal

transitions in question are implemented in that specific physical system. In the case

of the computational cognitive sciences, formal transitions are normally assumed

to be implemented (at some spatiotemporal scale) in the cognitive agent’s physical

behaviour or neural responses.

If a formal computation is physically implemented, the physical states that are ma-

nipulated will necessarily stand in some non-formal relations to distal entities in

the world. Physically implemented computations cannot help but stand in law-like

causal relations to objects in their environment, or have a history (and one that

might involve past learning and evolution). Given this, it is by nomeans obvious that

a physically implemented computation, unlike a purely formal abstract computation,

is silent about, or does not determine, assignment of semantic content. Under-

standing whether and how physical implementation relates to semantic content is a

substantial question and one that is distinct from those considered above (for vari-

ous proposals about the relationship between physically implemented computation

and semantic content, see Coelho Mollo, 2018; Dewhurst, 2018; Lee, 2018; Piccinini,

2015, pp. 26–50; Rescorla, 2013; Shagrir, 2020; Sprevak, 2010). At the moment, there

is no consensus among philosophers about whether, and to what extent, physical

implementation constrains the semantics of a computation’s states. Consequently, it

is worth bearing in mind that Searle’s observation that ‘syntax is not sufficient for

semantics’, even if true for the purely formal computations that he had in mind, may

not apply to the physically implemented computations proposed in many areas of

the computational cognitive sciences (see Boden, 1989; Chalmers, 1996, pp. 326–327;

Dennett, 1987, pp. 323–326)

3 Phenomenal consciousness – The hard problem

‘Consciousness’ may refer to many different kinds of mental phenomena, including

sleep and wakefulness, self-consciousness, reportability, information integration,

and allocation of attention (see van Gulick, 2018, for a survey). This section focuses

exclusively on a ‘no go’ argument concerning phenomenal consciousness. ‘Phenom-

enal consciousness’ refers to the subjective, qualitative feelings that accompany some

aspects of cognition. When you touch a piece of silk, taste a raspberry, or hear the

song of a blackbird, over and above any processes of classification, judgement, report,

attentional shift, control of behaviour, and planning, you also undergo subjective

sensations. There is something it feels like to do these things. Some philosophers
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reserve the term ‘qualia’ to refer to these feelings (Tye, 2018). The hard problem of

consciousness is to explain why phenomenal feelings accompany certain aspects of

cognition and to account for their distribution across our cognitive life (Chalmers,

1996, pp. 3–31; Chalmers, 2010b).

3.1 The conceivability argument against physicalism

The conceivability argument against physicalism is a ‘no go’ argument phrased in

terms of the conceivability of a philosophical zombie. A philosophical zombie is a

hypothetical being who is a physical duplicate of a human and who lives in a world

that is a physical duplicate of our universe – a world with the same physical laws

and the same instances of physical properties. The difference between our world

and the zombie world is that the agents in the zombie world either lack conscious

experience or have a different distribution of phenomenal experiences across their

mental life from our own. A zombie’s cognitive processes occur ‘in the dark’ or they

are accompanied by different phenomenal experiences from our own (e.g. it might

experience the qualitative feeling we associate with tasting raspberries when it tastes

blueberries and vice versa).

It is irrelevant to the conceivability argument whether a philosophical zombie could

come into existence in our world, has ever existed, or is ever likely to exist. What

matters is only whether one can coherently conceive of such a being. Can one

imagine a physical duplicate of our world where a counterpart of a human either

lacks phenomenal consciousness or has a different distribution of phenomenal

experiences from one’s own? Many philosophers have argued that this is indeed

conceivable (Chalmers, 1996, pp. 96–97; Kripke, 1980, pp. 144–155; Nagel, 1974).

By this, they don’t mean that zombies could exist in our world, or that we should

entertain doubts about whether other humans are zombies. What they mean is that

the idea of a zombie is a coherent one – it does not contain a contradiction; it is

unlike the idea of a married bachelor or the highest prime number.

The next step in the conceivability argument is to say that our ability to conceive of

a scenario is a reliable guide to whether it is possible. If a world in which zombies

exist is conceivable, then we should believe, pending evidence to the contrary, that

it corresponds to a genuine possibility. However, if a zombie world is possible, then

the distribution of physical properties and physical laws could be exactly as it is in

our world and the beings of that world either lack phenomenal experience or have

different phenomenal experiences from our own. That means that in our world

there must be some additional ingredient, over and above the physical facts, that

is responsible for the existence and distribution of our phenomenal experiences.

Something other than the physical laws and physical properties must explain the

difference between our world and a zombie world. Our phenomenal consciousness

11



cannot be determined only by the physical facts because those facts also hold in

the zombie world. Advocates of the conceivability argument conclude that a theory

of consciousness that appeals exclusively to physical facts is unable to explain the

existence and distribution of our phenomenal experiences (Chalmers, 1996, pp. 93–

171; Chalmers, 2010d).

According to the conceivability argument, a physicalist theory cannot answer the

following questions: (C1) How does our phenomenal conscious experience arise at

all? (C2) Why are our phenomenal conscious experiences distributed in the way

they are across our mental life? No matter which physical facts one cites, none

adequately answer C1 or C2 because the same physical facts could have obtained

and those conscious experiences be absent or different, as they are in a zombie world.

This raises the question of what – if not the totality of physical facts – is responsible

for the existence and distribution of our phenomenal experiences. Advocates of the

conceivability argument have various suggestions at this point, all of which involve

expanding or revising our current scientific ontology. The focus of this chapter

will not be on those options, but only on the negative point that phenomenal

consciousness is somehow out of bounds for current approaches to modelling

cognition (see Chalmers, 2010a, pp. 126–137, for a survey of non-physicalist options).

3.2 The conceivability argument against computational functionalism

The conceivability argument against physicalism may be modified to generate a ‘no

go’ argument against computational accounts of phenomenal consciousness.

The primary consideration here is that a hypothetical zombie who is our compu-
tational duplicate seems to be conceivable. This is a being who performs exactly

the same computation as we do but who either lacks conscious experience or has a

different distribution of conscious experiences from our own. Similar reasoning to

justify both the conceivability and possibility of such a being applies as in the case

of the original conceivability argument against physicalism. It seems possible to

imagine a being implementing any computation one chooses, or computing any

function, and for this to fail to be accompanied by a phenomenal experience, or for it

to be accompanied by a phenomenal experience different from our own. No matter

how complex the rules of a computation, nothing about it seems to necessitate the

existence or distribution of specific subjective experiences. One might imagine a

silicon or clockwork device functioning as a computational duplicate of a human –

undergoing the same computational transitions – but its cognitive life remaining ‘all

dark’ inside, or being accompanied by different subjective experiences from our own

(for analysis of such thought experiments, see Block, 1978; Dennett, 1978; Maudlin,

1989). As with the original conceivability argument, it does not matter whether

a computational zombie could exist in our world; what matters is only whether a
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world with such a being is conceivable.

A separate consideration is that the original conceivability argument appears to

entail a ‘no go’ conclusion concerning any computational model of consciousness

that has a physical implementation (Chalmers, 1996, p. 95). Plausibly, any world

that is a physical duplicate of our world is a world that is also a duplicate in terms

of the physical computations that are performed. It seems reasonable to assume

that the physical facts about a world fix which physical computations occur in that

world. According to the original conceivability argument, a world that is a physical

duplicate of ours could be one in which there is no consciousness or consciousness is

distributed differently. Putting these two claims together, a world that is a duplicate

of ours in terms of the physical computations performed could be one in which

phenomenal consciousness is absent or differently distributed. Hence, in our world

there must be some extra factor, over and above any physical computations, that

explains the existence and distribution of our phenomenal experiences. A scientific

model that appeals only to physical computations – which are shared with our

zombie counterparts – would be unable to explain the existence and distribution of

our phenomenal experiences.

It is worth stressing that the conceivability argument places no barrier against a com-

putational or physical model explaining access consciousness. ‘Access consciousness’

refers to the aspects of consciousness associated with reportability and information

sharing: storage of information in working memory, information sharing across

various processes of planning, reporting, control of action, decision making, and

so on (Block, 1990; Block, 2007). Baars (1988) proposed Global Workspace Theory

(GWT) as a way in which information from different cognitive processes comes

together. Dehaene and colleagues developed GWT and provided a possible neural

implementation (Dehaene and Changeux, 2004; Dehaene and Changeux, 2011;

Dehaene, Changeux et al., 2006). A theory of this kind might be able to account

for how and why certain pieces of information get shared and play a greater role

in driving thought, action, and report. However, advocates of the conceivability

argument claim that a model of access consciousness cannot explain phenomenal

consciousness. Following similar reasoning to that described in the previous section,

they argue that one can conceive of a system having access consciousness, but it still

lacking phenomenal consciousness or having a different distribution of phenomenal

experience to our own. Access consciousness does not necessitate the occurrence of

phenomenal feelings (for a contrary view, see Cohen and Dennett, 2011). For these

thinkers, explaining access consciousness is classified under the heading of an ‘easy

problem’ of consciousness (Chalmers, 2010b).

13



3.3 Naturalistic dualism

It is important to understand the extent of the intended ‘no go’ claim about phe-

nomenal consciousness. What is claimed is that solving the hard problem is beyond

the ability of a physical or computational model of consciousness. This does not

mean, however, that a physical or computational account can tell us nothing about

phenomenal consciousness. Chalmers (2010b; 2010c) argues that a computational

or physical model can, for example, tell us a great deal about correlations between

physical/computational states and our phenomenal experiences. The conceivability

argument does not deny that such correlations exist, and measurement of brain

activity shows ample evidence of correlations between brain states and phenomenal

experience. Describing and systematising these correlations may have consider-

able value to science in terms of allowing us to categorise, predict, and control

our phenomenal states. Such a model cannot, however, explain why phenomenal

experience occurs, for it cannot rule out the possibility that the same physical or

computational states could occur without any conscious accompaniment.

An analogy might help to clarify this point. Suppose that one were to begin a cor-

relational study of the phenomena of lightning and thunder. One might build a

statistical model that captures the relationship between observations of the two

phenomena. In a similar fashion, one might engage in a correlational study of brain

states and phenomenally conscious states and attempt to capture their relation-

ship. In both cases, something would be missing from the model that is produced.

What would be missing is an understanding of how and why the two variables are

linked. Lightning typically co-occurs with thunder, but not always, and no pattern

of lightning necessitates an observation of thunder (atmospheric conditions might

cause sound waves to be refracted or deadened before they reach the observer).

This gap in the model can be rectified by introducing further physical variables

(e.g. distributions of electrical charges in the air, measurements of air density and

temperature). In an enlarged, more detailed, physical model, it should be possible to

explain why observations of lightning are correlated with observations of thunder,

and how and why such correlations might fail to obtain. In the case of phenom-

enal consciousness, the conceivability argument claims to show that this kind of

remedy is not available. The ‘explanatory gap’ between the two variables cannot

be filled by introducing extra physical variables into one’s model. No matter how

many physical variables one adds, the model will still not entail the occurrence of

phenomenal experiences – for, according to the conceivability argument, all these

physical variables could be the same and the consciousness experience be absent or

different. A physical/computational model of consciousness can provide us with a

description of the correlates of consciousness, but it cannot provide an explanation

of why those correlates are accompanied by phenomenal experience.
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3.4 Eliminativism and related replies

Not all philosophers accept the reasoning behind the conceivability argument.

Dennett argues that one can easily be misled by ‘intuition pumps’ like zombie

thought experiments. These can work on our imagination like viewing a picture by

M.C. Escher: we appear to see something new and remarkable, but only because

certain considerations have been omitted or played up and we have failed to spot

some hidden inconsistency in the imagined scenario. Dennett suggests that a more

reasonable conclusion to draw is not that phenomenal consciousness is a ‘no go’

domain for computational modelling of cognition but that the project of trying,

from the armchair, to set a limit on what a physical/computational model can and

cannot explain is deeply misconceived (Dennett, 2013). For all we know, a truly

thorough, mature conceptualisation of a physical or computational duplicate of

our world, imagined down to the smallest detail, would rule out the possibility that

there could be zombies (Dennett, 1995; Dennett, 2001).

Dennett’s remarks about the reliability of our intuitions about zombies may dampen

one’s confidence in the ‘no go’ argument. However, this by itself does not block

the argument. In order to do this, Dennett also commits to the more speculative,

positive claim that if we were to successfully wrap our heads around some future

correct computational model of consciousness, then we would see that it must bring

all aspects of consciousness along with it. Advocates of the conceivability argument,

while typically open to the idea that zombie intuitions are not apodictically certain

(we might be deluding ourselves about the conceivability of a zombie world), tend

to pour scorn on this latter contention. No matter how complex a computational

model is, they say, it simply is not clear how it could entail that specific conscious

experiences occur (Strawson, 2010). The idea that, somewhere in the space of all

possible computational models, somemodel exists that entails conscious experience

is, according to these critics, pure moonshine or physicalist dogma (Strawson, 2018).

A position one might be driven towards, and which Dennett defends in Conscious-
ness Explained (1991), is that certain aspects of consciousness – namely, the first-

person felt aspects targeted by zombie thought experiments – are not real. This

amounts to a form of eliminativism about phenomenal consciousness (Irvine and

Sprevak, 2020). Such positions face a heavy intuitive burden. The existence and

character of our feelings of phenomenal consciousness seem to be among the things

about which we are most certain. Denying these subjective ‘data’, which are access-

ible to anyone via introspection, may strike one as unacceptable. Nevertheless, past

scientific theories have prompted us to abandon other seemingly secure assump-

tions about the world. If it can be shown that when we introspect on our experience

we are mistaken, then perhaps eliminativism can be defended. The potential bene-

fits of eliminativism about phenomenal consciousness are considerable: the hard
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problem of consciousness and the challenge posed by the conceivability argument

would dissolve. If there is no phenomenal consciousness, then there is nothing for

a computational model to explain.

Unfortunately, in addition to the difficulty just mentioned, a further problem faces

eliminativist accounts. This is to explain how the (false) data we have about the

existence and character of our phenomenal consciousness arise in the first place.

This is the so-called illusion problem (Frankish, 2016). Some researchers claim that

our impression that we have phenomenal consciousness is caused by misfiring of

mechanisms of our internal information processing and self report (Clark, 2000;

Dennett, 1991; Frankish, 2016; Graziano, 2016). However, such accounts tend to

explain only why we believe or act as if we have phenomenal consciousness. It is

not clear how the hypothesised mechanisms generate the felt first-person illusion

of consciousness (Chalmers, 1996, pp. 184–191). In other words, it is not clear

how unreliable introspective mechanisms could generate the false impression of

phenomenal consciousness, any more than reliable introspective mechanisms could

generate the true impression of phenomenal consciousness. The challenge that

an eliminativist faces is to show that the illusion problem is easier to solve by

computational or physical means than the hard problem of consciousness (see Prinz,

2016).

4 Central reasoning – The frame problem

A third major target for philosophical ‘no go’ arguments is central reasoning. This

concerns our ability to engage in reliable, general-purpose reasoning over a large

and open-ended set of representations, including our common-sense understanding

of the world. Modelling human-level central reasoning is closely tied to the problem

of creating a machine with artificial general intelligence. Current AI systems tend to

function only within relatively constrained problem domains (e.g. detecting credit

card fraud, recognising faces, winning at Go). They generally perform poorly, or not

at all, if the nature of their problem changes, or if relevant contextual or background

assumptions change (Lake et al., 2017; Marcus and Davis, 2019). In contrast, humans

are relatively robust and flexible general-purpose reasoners. They can rapidly switch

between different tasks without significant interference or relearning, they can

deploy relevant information across tasks, and they tend to be aware of how their

reasoning should be adjusted when background assumptions and context change.

Small fragments of human-level central reasoning have been computationally mod-

elled using various logics, heuristics, and other formalisms (e.g. J. R. Anderson,

2007; Davis andMorgenstern, 2004; Gigerenzer, Todd and the ABCResearchGroup,

1999; McCarthy, 1990; Newell and Simon, 1972). However, modelling human-level
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central reasoning in full – in particular, accounting for its flexibility, reliability, and

deep common-sense knowledge base – remains an unsolved problem. Philosophers

have attempted to argue that this lacuna is no accident, but arises because cent-

ral reasoning is in a certain respect a ‘no go’ area for computational accounts of

cognition.

4.1 The frame problem

Philosophers often describe their ‘no go’ arguments about central reasoning as

instances of the frame problem in AI. This can be misleading as ‘the frame problem’

refers to a more narrowly defined problem specific to logic-based approaches to

reasoning in AI. The frame problem in AI concerns how a logic-based reasoner

should represent the effects of actions without having to represent all of an action’s

non-effects (McCarthy and Hayes, 1969). Few actions change every property in the

world – eating a sandwich does not (normally) change the location of Australia.

However, the information that Eat(Sandwich) does not change Position(Australia) is
not a logical truth but something that needs to be encoded somehow, either explicitly

or implicitly, in the system’s knowledge base. Introducing this kind of ‘no change’

information in the form of extra axioms that state every non-effect of every action

– ‘frame axioms’ – is unworkable. As the number of actions (N) and properties

(M) increases, the system would need to store approximately NM axioms. The

frame problem in AI concerns how to encode this ‘no change’ information more

efficiently. The challenge is normally interpreted as the problem of formalising a

general inference rule that an action does not change a property unless the reasoning

system has evidence to the contrary. Formalising this rule poses numerous technical

hurdles, and it has stimulated important developments in non-monotonic logics,

but it is widely regarded as a solved issue within logic-based AI (Lifschitz, 2015;

Shanahan, 1997; Shanahan, 2016).

A number of philosophers, inspired by the original frame problem, have suggested

that there are broader and more fundamental difficulties with explaining human-

level central reasoning with computation. They do not, however, agree about the

precise nature of these difficulties, their scope, or their severity. A number of

proposals – confusingly also called the ‘frame problem’ – can be found in Pylyshyn

(1987) and Ford and Pylyshyn (1996). Useful critical reflections on this work are

found in Chow (2013), Samuels (2010), Shanahan (2016), and Wheeler (2008). The

remainder of this section summarises two attempts by philosophers to pinpoint the

problem with modelling human-level central reasoning.
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4.2 Dreyfus’s argument

The first argument was developed by Hubert Dreyfus (1972; 1992). Dreyfus initially

targeted classical, symbolic computational approaches to central reasoning. The

sort of computational model he had in mind was exemplified by Douglas Lenat’s

Cyc project. This project aimed to encode all of human common-sense knowledge

in a giant symbolic database of representations over which a logic-based system

could run queries to produce general-purpose reasoning (Lenat and Feigenbaum,

1991). Dreyfus argued that no model of this kind could capture human-level general-

purpose reasoning. This was for two main reasons.

First, it would be impossible to encode all of human common-sense knowledge

with a single symbolic database. Drawing on ideas from Heidegger, Merleau-Ponty,

and the later Wittgenstein, Dreyfus suggested that any attempt to formalise human

common-sense knowledge will fail to capture a background of implicit assump-

tions, significances, and skills that are required in order for that formalisation to

be used effectively. These philosophers defended the idea that our common-sense

knowledge presupposes a rich background of implicit know-how. Fragments of

this know-how can be explicitly articulated in a set of symbolic rules, but not all of

it at once. Attempts to formalise all of human common-sense knowledge in one

symbolic system will, for various reasons, leave gaps, and attempts to fill those gaps

will introduce further gaps elsewhere. The goal of formalising the entirety of human

common-sense knowledge in symbolic terms will run into the same kinds of prob-

lems that caused Husserl’s twentieth-century phenomenological attempt to describe

explicitly all the principles and beliefs that underlie human intelligent behaviour

to fail (H. L. Dreyfus, 1991; H. L. Dreyfus and S. E. Dreyfus, 1988). (Searle makes a

similar point regarding what he calls the ‘Background’ in Searle, 1992, pp. 175–196.)

Second, even if human common-sense knowledge could be encoded in a single

symbolic database, the computational system would find itself unable to use that

information efficiently. Potentially, any piece of information from the database could

be relevant to any task. Without knowledge about the specific problems the system

was facing, there would be no way to screen off any piece of knowledge as irrelevant.

Because the database would be so large, the system would not be able to consider

every piece of information it had in turn and explore all its potential implications.

How, then, would it select which symbolic representations were relevant to a specific

problem at hand? In order to answer this, it would need to know which specific

problem it was facing – about its context and which background assumptions it was

safe to make. But how would it know this? Unless the programmer had told it the

answer, the only way would seem to be to deploy its database of common-sense

knowledge to infer the type of situation it was in and the nature of the problem

it now faced. But that leads one back to the original question of how it was to
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use information in that database efficiently. In order to deploy its vast database

efficiently, the system would have to know which pieces of knowledge were relevant

to the problem at hand. In order to know that, it would have to know what that

problem was. But in order to know this, it would need to be able to use its database

of knowledge efficiently, which it cannot do because it would not know which pieces

of knowledge were relevant. Dreyfus concludes that any computational model

that attempts to perform central reasoning would be trapped in an endless loop of

attempting to determine context and relevance (H. L. Dreyfus, 1992, pp. 206–224).

Dreyfus claimed that these twoproblems affect any classical, symbolic computational

attempt to model human-level general-purpose reasoning. In later work, Dreyfus

attempted to extend his ‘no go’ argument to other kinds of computational model

– connectionist networks trained under supervised learning and reinforcement

learning. He cautiously concluded that although these models might avoid the

first problem (connectionist networks are not committed to formalising knowledge

with symbolic representations), they are still affected by something similar to the

second problem. Our current methods for training connectionist networks and

reinforcement-learning systems tend to tune these models to relatively narrow

problem domains. Such systems have not shown the flexibility to reproduce human-

level general-purpose central reasoning; they tend to be relatively brittle (H. L.

Dreyfus, 1992, pp. xxxiii–xliii; H. L. Dreyfus, 2007). It is worth noting that the

character of Dreyfus’s argument changes here from that of an in principle ‘no go’

(it is impossible for any classical, symbolic computational model to account for

central reasoning) to more of a hedged prediction based on what has been achieved

by machine-learning methods to date (we do not – yet – know of a method to

train a connectionist network to exhibit human-level flexibility in general-purpose

reasoning).

Dreyfus proposed that central reasoning should be modelled using a dynamical,

embodied approach to cognition that has come to be known as ‘Heideggerian AI’.

The details of such a view are unclear, but broadly speaking the idea is that the

relevant inferential skills and embodied knowledge for general-purpose reasoning

are coordinated and arranged such that they are solicited by the external situation

and current context to bring certain subsets of knowledge to the fore. The resources

needed to determine relevance therefore do not lie in a computation inside our

heads, but are somehow encoded in the dynamical relationship between ourselves

and the external world (Haugeland, 1998). Wheeler (2005; 2008) develops a version

of Heideggerian AI that takes inspiration from the situated robotics movement

(Brooks, 1991). H. L. Dreyfus (2007) argues for an alternative approach based

around the neurodynamics work of Freeman (2000). Neither has yet produced a

working model that performs appreciably better at modelling human-like context

sensitivity than more conventional computational alternatives.
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4.3 Fodor’s argument

Jerry Fodor argued that two related problems prevent a computational model from

being able to account for human-level central reasoning. He called these the ‘global-

ity’ problem and the ‘relevance’ problem (Fodor, 1983; Fodor, 2000; Fodor, 2008).

Like Dreyfus, Fodor focused primarily on how these problems affect classical, sym-

bolic models of central reasoning. Fodor believed that a non-symbolic model

(e.g. a connectionist system) would be unsuited to modelling human-level central

reasoning because it cannot account for the systematicity and compositionality

that he considered necessary features of human thought (for that argument, see

Fodor, 2008; Fodor and Lepore, 1992; Fodor and Pylyshyn, 1988). (For discussion

of connectionist approaches to central reasoning, see Samuels, 2010, pp. 289–290.)

The globality problem concerns how a reasoning system computes certain epistemic

properties that are relevant to general-purpose reasoning: simplicity, centrality,

and conservativeness of representations. Fodor suggested that these properties are

‘global’, by which he meant that they may depend on any number of the system’s

other representations. They are not features that supervene exclusively on intrinsic

properties of the individual representation of which they are predicated. A repres-

entation might count as simple in one context – for example, relative to one set of

surrounding beliefs – but complex in another. The simplicity of a representation is

not an intrinsic property of a representation. Hence, its simplicity cannot depend

solely on a representation’s intrinsic, local syntactic properties. Fodor claimed that

a classical computational process is sensitive only to the intrinsic, local syntactic

properties of the representations it manipulates. Therefore, any central reasoning

that requires sensitivity to global properties cannot be a classical computational

process.

Fodor’s globality argument has been roundly criticised (e.g. by Ludwig and

Schneider, 2008; Samuels, 2010; Schneider, 2011). Critics point out that com-

putations may be sensitive not only to the intrinsic properties of individual

representations, but also to syntactic relationships between representations: for

example, how a representation’s local syntactic properties relate to the local

syntactic properties of other representations and how they relate to the system’s

rules of syntactic processing. The failure of an epistemic property like simplicity

to supervene on a representation’s intrinsic, local syntactic properties does not

mean that simplicity cannot be tracked or evaluated by a computational process.

Simplicity may supervene on, and be reliably tracked by following, the syntactic

relationships between representations. Fodor (2000) anticipates this response,

however – he labels it M(CTM). He argues that solving the globality problem in

this way runs into his second problem.
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The second problem arises when a reasoning system needs to make an inference

based on a large number of representations, any combination of which may be

relevant to the problem at hand. Typically, only a tiny fraction of these represent-

ations will be relevant to the inference. The relevance problem is to determine

the membership of this fraction. Humans tend to be good at focusing in on only

those representations from their entire belief set that are relevant to their current

context or task. But we do not know how they do this. Echoing the worries raised

by Dreyfus, Fodor says we do not know of a computational method that is able to

pare down the set of all the system’s representations to only those relevant to the

current task.

4.4 Responses to the problems

Some philosophers have responded to these problems by emphasising the role of

heuristics in relevance determination. They point to the computational methods

used by Internet search engines, which, although far from perfect, often do a de-

cent job of returning relevant results from very large datasets. They also stress that

humans sometimes fail to deploy relevant information or that they use irrelevant in-

formation when reasoning (Carruthers, 2006; Clark, 2002; Lormand, 1990; Samuels,

2005; Samuels, 2010). These two considerations might increase our confidence that

human-level central reasoning – and in particular the relevance problem – might

be tackled by computational means. However, it does not cut much ice unless one

can say which heuristics are used and how the observed success rate of humans is

produced. Heuristics might, at some level, inform human central reasoning, but

unless one can say precisely how they do this – and ideally produce a working

computational model that exhibits levels of flexibility and reliability similar to those

seen in human reasoning – it is hard to say that one has solved the problem (see

Chow, 2013, pp. 315–321).

Shanahan and Baars (2005) and Schneider (2011) suggest that the issues that Dreyfus

and Fodor raise can be resolved within GWT. GWT is a proposed large-scale com-

putational architecture in which multiple ‘specialist’ cognitive processes compete

for access to a global workspace where central reasoning takes place. Access to the

global workspace is controlled by ‘attention-like’ processes (Baars, 1988). Mashour

et al. (2020) and Dehaene and Changeux (2004) describe a possible neural basis for

GWT. Goyal et al. (2021) suggest GWT as a way to enable several special-purpose AI

systems to share information and coordinate decision making. GWT is a promising

architecture, but it is unclear whether it can function as a response to the arguments

of Dreyfus and Fodor. The model does not explain the mechanism by which inform-

ation from specialist processes is regulated so as to be relevant to the current context

and the contents of the central workspace. Baars and Franklin (2003) suggest there
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is an interplay between ‘executive functions’, ‘specialist networks’, and ‘attention

codelets’ that control access to the global workspace, but exactly how these compon-

ents work to track relevance is left unclear. As with the suggestion about heuristics,

GWT is not (or not yet) a worked-out solution to the relevance-determination

problem (see Sprevak, 2019, pp. 557–558).

A notable feature of the ‘no go’ arguments that target human-level central reasoning

is that, unlike the ‘no go’ arguments of Sections 2 and 3, they do not straightfor-

wardly generalise across the space of all computational models. Both Dreyfus’s and

Fodor’s arguments consist in pointing out problems with specific computational

approaches to central reasoning – primarily, with classical, symbolic models and

current connectionist and reinforcement-learning approaches. The persuasive force

of what they say against untried or as-yet unexplored computational approaches

is unclear. Sceptics might see in their arguments evidence that central reasoning

is unlikely to ever yield to a computational approach – Dreyfus and Fodor both

suggest that the track record of failure of computational models should lead one

to infer that no future computational model will succeed. Fans of computational

modelling might respond that explaining central reasoning is an extremely hard

research problem and it should not be surprising if it has not yet been solved by

computational methods. The landscape of as-yet untried computational methods is

very large and, pending evidence to the contrary, we should not presume that central

reasoning cannot yield to a computational model (Samuels, 2010, pp. 288–292).

5 Conclusion

This chapter describes a small sample of philosophical issues in the computational

cognitive sciences. Its focus has been ‘no go’ arguments regarding three distinct

aspects of human cognition: semantic content, phenomenal consciousness, and

central reasoning. One might worry that the project of placing limits on what the

computational cognitive sciences can achieve is rash given their relatively early

state of development. But this would be to misinterpret how the ‘no go’ arguments

function. These arguments attempt to formalise objections – of different types

and different strengths – to the assumption that every aspect of cognition can

be adequately explained with computation. This need not shut down debate on

the topic, but can serve as an opening move and a potentially helpful spur. The

project bears directly on questions about the estimated plausibility of future research

programmes within the cognitive sciences, the motivations for pursuing them, and

the rationale for devoting resources to computational versus non-computational

approaches. Such judgements cannot be avoided; they are made regularly within

the cognitive sciences. They are also best made on a considered basis, with reasons

marshalled and assessed. Philosophical work in this area can help to systematise
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evidence and provide decision makers with reason-based considerations about what

challenges the computational cognitive sciences are likely to face.
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