
Published in Philosophies (2022) 7: 113

doi:10.3390/philosophies7050113

mark.sprevak@ed.ac.uk

Not all computational methods are

effectivemethods

Mark Sprevak

University of Edinburgh

3 October 2022

An effectivemethod is a computational method thatmight, in principle, be executed by a

human. In this paper, I argue that there aremethods for computing that are not effective

methods. The examples I consider are taken primarily from quantum computing, but

these are onlymeant to be illustrative of amuch wider class. Quantum inference and

quantum parallelism involve steps that might be implemented in multiple physical

systems, but cannot be implemented, or at least not at will, by an idealised human.

Recognising that not all computational methods are effectivemethods is important for

at least two reasons. First, it is needed to correctly state the results of Turing and other

founders of computation theory. Turing is sometimes said to have offered a replacement

for the informal notion of an effective method with the formal notion of a Turing

machine. I argue that such a view only holds under limited circumstances. Second,

not distinguishing between computational methods and effectivemethods can lead to

mistakes when quantifying over the class of all possible computational methods. Such

quantification is common in philosophy ofmind in the context of thought experiments

that explore the limits of computational functionalism. I argue that these ‘homuncular’

thought experiments should not be treated as valid.

1 Introduction

What is the relationship between the notion of a computational method and that

of an effective method? A number of authors assume that the two notions are

coextensive. Indeed, some treat the terms ‘effective method’ and ‘computational

method’ not just as extensional equivalents but also as synonyms. The claim made

by this paper is that any such equation is false: not all computational methods are

effectivemethods.

1

http://dx.doi.org/10.3390/philosophies7050113
mailto:mark.sprevak@ed.ac.uk


Distinguishing effective methods from computational methods is important for

a number of reasons. First, it is needed to accurately represent the historical mo-

tivations of the founders of computation theory, such as Turing, and to correctly

state their results in a modern context. Second, not distinguishing between the

two has the potential to adversely affect our reasoning when we quantify over the

class of all possible computational methods. For example, if one thinks that some

mental processes are computational processes, onemight be led to an incorrect view

about the possible nature of those processes – that they are the kinds of things that

‘littlemen’ might perform. While this kind of homuncular thinking might serve

as a rough heuristic or explanatory device when first introducing computational

ideas about themind, it is simply not the right way to understand computational

processes. Not all computational methods are human executable, even in principle.

Turing famously developed a formal predicate that aimed to make the informal

idea of an effectivemethodmore precise. This formalisation, the Turing machine,

is sometimes described as offering a ‘definition’, an ‘analysis’, or a ‘replacement’ for

the informal notion of an effective method. I argue that care should be taken in

interpreting these claims. Turing’s formalisation may serve as an adequate replace-

ment for the informal notion in certain contexts, but not in all. In particular, if

one chooses to individuate computational methods so as to preserve fine-grained

differences between methods that compute the same function – for example, if

one is a functionalist about themind or one cares about the complexity profiles of

different methods for computing the same function – then themethods available to

a system that uses an effectivemethod cannot be identified with those available to a

system that can use any computational method.

The argument of this paper runs as follows. In Section 2, I distinguish my argument

from two superficially similar arguments in the literature: the first is that hypercom-

puters provide examples of non-effective computational methods; the second is that

all computational methods should be individuated extensionally (by their overall

input–output profile). In Section 3, I analyse the notion of an effectivemethod; I

argue that an essential requirement is that an effectivemethod should, in principle,

be human executable. In Section 4, I consider the objection that Turing offered a

precisification of the notion of an effectivemethod that would allow us to dispense

with the informal notion. In Section 5, I examine instances of the claim that all

computational methods are effectivemethods and explore some of their damaging

consequences. In Section 6, I describe two examples, taken from quantum com-

puting, of computational methods that are not effectivemethods. In Section 7, I

consider the objection that quantum computing methods may still be executed by

hand if a human were to simulate, step-by-step, the evolution of the underlying

quantum wave function.

2



2 Distinguishing features of this argument

The argument in this paper should be distinguished from similar arguments in

the literature that (i) depend on hypercomputation; or (ii) concern differences in

functions rather than in methods.

2.1 No dependence on hypercomputation

Hypercomputers are hypothetical (real or notional) systems that compute functions

that cannot be computed by any effectivemethod.¹ Thesemachines generally deploy

some deliberately ‘non-effective’ element as part of their design – some special extra

resource that is not available to a human being working by themself. The exact

nature of this special resourcemay vary between different machines. It might, for

example, take the form of being able to complete an infinite number of steps in

finite time, of being able to store arbitrary real numbers with infinite precision, or

of having an ‘oracle’ that provides themachine with the answer to uncomputable

problems via some non-effectivemeans.²

It might seem natural to appeal to hypercomputers to justify the claim that not

all computational methods are effectivemethods. Shagrir and Pitowsky develop

an argument along exactly these lines. After introducing various hypercomputer

designs, they write:

. . . ‘effective computation’ (i.e., calculation by means of effective pro-

cedures) encompasses a wide, and an important, class of computations,

but not necessarily all computations . . . none of the hyper-machines

described in the literature computes bymeans of effective procedures.

(Shagrir and Pitowsky, 2003, p. 94)

If one accepts that hypercomputers are computers in the full and ordinary sense

of the word, then it appears that no more needs to be said. Not all computational

methods are effectivemethods because the computational methods used by hyper-

computers are (by design) not effectivemethods.

Complicating this conclusion, however, are two issues.

First, the hypercomputers that have been proposed to date are only notional con-

structs. It is unclear whether they correspond to possibilities that are in any reas-

onable sense physically or practically available to us. It is unknown whether the

kinds of non-effective resources required by hypercomputers could be physically

¹See Copeland and Proudfoot (1999).

²For examples of proposed hypercomputers designs, see Copeland and Sylvan (1999); Copeland

(2002); Copeland (2004); Syropoulos (2008).

3



implemented in our universe, and even if they could, whether they could be ex-

ploited by us in a practical way.³ This may prompt one to wonder whether we

should treat hypercomputers as being exactly on a par with more ordinary types of

computer. Notwithstanding the properties of notional hypercomputers, perhaps all

computational methods that can be physically implemented, or implemented in some
practicable way, are effectivemethods. If one’s primary interest is in methods that

can be, or actually are, physically implemented – for example, the computational

methods that are implemented in the brain – then perhaps one can ignore or bracket

off considerations about non-effectivemethods based solely on hypercomputation.

Second, even if one ignores issues about the physical implementation of hyper-

computers, it is common for both advocates and critics of hypercomputation to

characterise hypercomputers as not computing in the full or ordinary sense of the

term. Németi and Dávid (2006) talk of their machines using computational meth-

ods in a ‘broad’ or ‘extended’ sense. Copeland (1997) describes them as satisfying a

‘nonclassical’ conception of computation. Turing (1939) refers to oraclemachines

as instances of ‘relativised’ computation: computation relative to the assumption

that some problem uncomputable in the ordinary sense has been solved. These

qualifications seem to suggest that a distinction should be drawn between an or-

dinary conception of computation and an extended or relativised notion. As with

the previous point, this threatens to deaden the force of the claimed result. Not

all hypercomputational methods are effective methods, but perhaps all ordinary
computational methods are.

This paper deliberately avoids appeal to hypercomputation to justify the claim that

not all computational methods are effectivemethods. This is not to endorse either

of the two concerns above, but only to show that one does not need to rely on

hypercomputational methods in order to establish the relevant claim.

The examples I use to justify the claim are taken from quantum computing. These

have been chosen because (i) they are known to be physically implementable (and are

already physically implemented and practically used); and (ii) they are commonly

regarded as computing in the ordinary (non-hyper, non-extended) sense.4

In their seminal paper on hypercomputation, Copeland and Sylvan wrote:

It is perhaps surprising that not all classical algorithms are manual

methods. That this is in fact the case has emerged from recent work on

quantum computation . . .Algorithms for quantumTuringmachines are

³For a range of objections to hypercomputation along these lines, see Button (2009); Davis

(2004); Piccinini (2011).

4I do not claim that quantum cases are the only examples of non-effective computational

methods; see the end of Section 6 for discussion of other possible examples.

4



not in general manual methods, since not all the primitive operations

made available by the quantumhardware can be performed by a person

unaided bymachinery. (Copeland and Sylvan, 1999, p. 55)

After making this observation, they immediately turn to consider hypercomputa-

tion (‘non-classical’ algorithms). They do not return to, or explore further, non-

hypercomputational methods (‘classical’ algorithms) that are not effective (‘manual’)

methods. This paper could be understood as an attempt to expand on and defend

Copeland and Sylvan’s original observation.

2.2 Computations should be individuated by their internal workings

It is common for textbook discussions of effectivemethods to focus on questions

of computability – questions about which functions can be computed.5 In that

context, computational methods are normally individuated extensionally: by their

overall input–output behaviour.6 My focus in this paper is not on the question of

which functions are computable, but onwhichmethod is used for computing a given

function. None of the examples I consider involve computation of a function that

cannot also be computed by some effectivemethod. The question considered here is

whether the deployment of a computational method always entails the deployment of

an effectivemethod. This should be interpreted as not a question about computability,

but as a question about the conditions underwhich effectivemethods are and are not

instantiated in a given computational system. In order to be able to state this question

correctly, and to prevent it collapsing into the question about computability, it is

important thatwe do not individuate computational methods in a purely extensional

fashion. To this end, in the context of this paper, I will assume that computational

methods should be individuated, at least in part, by their internal workings.7

It should be stressed that this assumption is not ad hoc or unmotivated. Questions of

computability and relations of extensional equivalence are important, but more fine-

grained differences between computational methods matter too. Such differences

are relevant to proposals about computational functionalism regarding themind.

According to these views, what is required for having amental life is not only having

the right behavioural responses – computing the right input–output function – but

also the computational method by which that behaviour is generated – how the

5Or which numbers can be computed (see Section 4), or which puzzles can be solved by compu-

tational means (see Section 5).

6In other words, by the function that they compute, where ‘function’ is understood in a purely

extensional way, i.e. as a set or ordered pairs corresponding to the overall input and output.

7In the terms of Church (1941), we consider differences in the function-in-intension rather than

the function-in-extension. In the terms ofMarr (1982), we individuate computations as they are at

the algorithmic level rather than at the computational level (pp. 22–24).

5



system calculates its function. If one wishes to reproduce or model cognition in an

artificial system, then reproducing thatmethod – notmerely its overall input–output

behaviour – is essential.8

Fine-grained differences between computational methods also matter to computer

science. Different methods for computing the same function sometimes impose

significantly different demands on resource usage, rendering some computational

methods more or less feasible to implement. Measures of that resource usage – often

summarised by a function that bounds howmuch time or space amethod uses in

the worst case – are of considerable theoretical and practical interest in computer

science.9

BubbleSort andMergeSort are widely regarded as distinct computational meth-

ods even though they compute the same function. Both methods take an unordered

list of elements as input and yield a sorted list of the same elements as output.

BubbleSort works by swapping pairs of adjacent elements in place until the entire

list is sorted. MergeSort works by splitting a list to create sublists which it then

recursivelymerges to produce a final sorted version. BubbleSort can be shown

to have a worst-case run-time complexity of O(n2) and space complexity of O(1),
whereas MergeSort has aworst-case run-time complexity of O(n log n) and space

complexity of O(n).¹0 A powerful motivation for distinguishing between these

computational methods – for treating them as two distinct computational methods

rather than as one – is that they have different worst-case complexity profiles. Their

different complexity profiles are strong indicators that they place significantly differ-

ent demands on the resources of any system that implements them. The implied

general principle – that different worst-case complexity profiles indicate different

computational methods – will be important later in this paper.

Worst-case complexity profiles are not the only considerations of relevance when

individuating computational methods. Variants of either BubbleSort or Merge-

Sort might share the same worst-case complexity profile but still count as different

methods. Indeed, for any computational method onemight imagine introducing

a range of variations from minor (e.g. extra debugging checks) to major changes

(e.g. new data structures) into the sequence of its operations without changing its

worst-case complexity profile. At which point does a variation in a method’s in-

8See Block (1981) for a classic discussion of this.

9Worst-casemeasures of space or time complexity are not the only ones used to describe this

resource usage, but they are themost commonly employed. Thanks to an anonymous reviewer for

this point.

¹0In this notation, n is the size of the list and O(g(n)) provides an asymptotic upper bound on

the resource consumption: for large enough n, resource consumption is always less than or equal to

some constant times the g(n) function named inside the O(⋅). For more on complexity theory and

use of big-O notation to measure resource usage, see Papadimitriou (1994).

6



ternal workings produce a new computational method? Which factors – above and

beyond differences in worst-case complexity profile –matter when individuating

computational methods?

This question is a hard one to answer. Currently, there is no agreed answer, or

at least none that takes the form of an exhaustive set of necessary and sufficient

conditions.¹¹ It is difficult to give a fully general theory for the individuation of

computational methods. There aremultiple reasons for this. One is that there are

‘borderline’ cases where no one seems to be certain whether a theory should say

that two computational methods are the same or not. Another is that the standards

regarding what we treat as the ‘same’ computational method sometimes appear to

vary depending on context and what features are currently ofmost interest to the

interlocutors.¹² Notwithstanding these challenges, however, and the presence of

‘hard’ cases for a general theory to handle, there are also plenty of clear-cut cases

where we can say that computational methods are the same or different.

BubbleSort andMergeSort are examples of such cases. They are paradigmatic

examples of different computational methods, and classified as such both clearly

and relative to any interests. As remarked above, a powerful consideration in their

specific case – one that makes the relevant identity judgement relatively clear-cut –

is their demonstrable difference in worst-case complexitymeasure. In computer

science, it is unheard of for two computational methods with different worst-case

complexity profiles to be classified as the same for any purpose other than exten-

sional equivalence.¹³ My claim is that, relative to this widely accepted, clear, and

robust standard for individuating computational methods, there are computational

methods that are not effectivemethods.

3 What is an effectivemethod?

Copeland provides a clear characterisation of an effectivemethod:

Amethod, or procedure, M, for achieving some desired result is called

‘effective’ (or ‘systematic’ or ‘mechanical’) just in case:

¹¹See Dean (2016) for a review of contemporary analytic approaches to this problem, including

those of Gurevich (1999; 2000) andMoschovakis (2001).

¹²For a helpful analysis of these two problems in relation to creating a general theory, see Blass,

Dershowitz and Gurevich (2009).

¹³See Knuth (1981), p. 97, who suggests that a distinguishing feature of computer science is that

algorithms should be individuated by their complexity class. He argues that this ‘algorithmic’ mode

of thinking separates the thought processes of earlier mathematicians from those of later computer

scientists (pp. 96–98). See Dean (2016), pp. 20–29; Shagrir (2016) for further discussion of how and

why complexity profiles matter to the individuation of computational methods.

7



1. M is set out in terms of a finite number of exact instructions

(each instruction being expressed bymeans of a finite number of

symbols);

2. M will, if carried out without error, produce the desired result in

a finite number of steps;

3. M can (in practice or in principle) be carried out by a human

being unaided by anymachinery except paper and pencil;

4. M demands no insight, intuition, or ingenuity, on the part of the

human being carrying out themethod. (Copeland, 2020)

Or more briefly:

A mathematical method is termed ‘effective’ or ‘mechanical’ if and

only if it can be set out in the form of a list of instructions able to

be followed by an obedient human clerk . . . who works with paper

and pencil, reliably but without insight or ingenuity, for as long as is

necessary. (Copeland, 2000, p. 12)

What Copeland says is consistent with a wide range of historical and contemporary

sources:

Turing examined . . . humanmechanical computability and exploited,

in sharp contrast to Post, limitations of the human computing agent to

motivate restrictive conditions . . . Turing asked in the historical context

in which he found himself the pertinent question, namely, what are

the possible processes a human being can carry out (when computing

a number or, equivalently, determining algorithmically the value of a

number theoretic function)? (Sieg, 2002, p. 395)

[Computable problems are those] which can be solved by human cler-

ical labour, working to fixed rule, and without understanding. (Turing,

1992, pp. 38–39)

[With regard to what is effectively calculable] Both Church and Tur-

ing had in mind calculation by an abstract human being using some

mechanical aids (such as paper and pencil). (Gandy, 1980, p. 123)

Turing’s analysis makes no reference whatsoever to calculating machines.
Turing machines appear as a result, as a codification, of his analysis of

calculation by humans [previously defined as ‘effective calculability’].

(Gandy, 1988, p. 77)

8



Roughly speaking, an algorithm [previously defined as an ‘effective pro-

cedure’] is a clerical (i.e., deterministic, book-keeping) procedurewhich

can be applied to any of a certain class of symbolic inputs and which

will eventually yield, for each such input a corresponding symbolic

output. (Rogers, 1967, p. 1)

Effectiveness. An algorithm is also generally expected to be effective, in
the sense that its operations must all be sufficiently basic that they can

in principle be done exactly and in a finite length of time by someone

using pencil and paper. (Knuth, 1997, p. 6)

[an effective procedure is] a list of instructions . . . that in principle

make it possible to determine the value f (n) for any argument n . . .

The instructions must be completely definite and explicit. They should

tell you at each step what to do, not tell you to go ask someone else

what to do, or to figure out for yourself what to do: the instructions

should require no external sources of information, and should require

no ingenuity to execute . . . (Boolos, Burgess and Jeffrey, 2007, p. 23)

Common to all these suggestions is the idea that an effective method should be

capable of being executed by a lone human being unaided by any resources except
paper and pencil. The human is allowed an unlimited but finite amount of time,

they are assumed not to make errors or get bored, and they have an unlimited but

finite supply of paper and pencils. An effective method is a method that can be

implemented by such an idealised human worker. Correspondingly, the kinds of

operations that can be executed by this idealised human set limits on the class of

effectivemethods.

Some authors have argued for revisionist accounts of ‘effectivemethod’. Cleland

(2002; 2004) proposes that an effectivemethod is a ‘quotidian’ procedure that has

essentially physical, causal consequences, such as baking a cake or assembling

a child’s bicycle. Although a human might follow an effective method, human

executability is not a necessary condition on such amethod – a non-living particle

travelling through a vacuummight follow an effectivemethod that no human could

replicate. Etesi and Németi (2002) suggest that ‘effectivemethod’ should refer to

anymethod that can be realised in any physical system, whether that system is an

idealised human being or not. Shagrir (2002) argues that the term ‘effectivemethod’

has undergone ameaning shift: in 1936, it meant amethod that was in principle

human executable, but today it means any symbolic operation that makes use of a

finite procedure, and so it may refer to methods executable by humans, physical

9



systems, or abstract automata.¹4

What our words mean is ultimately up to us and, in principle, there is nothing

to stop a sufficiently determined revisionist from electing to define or redefine

‘effective method’ so that it includes non-human-executable methods. However,

there are good reasons for not choosing to define ‘effective method’ in this way.

Or rather, there are good reasons for maintaining a term in our vocabulary that

refers specifically to only human-executable computational methods, and this role

is normally occupied in mathematics and computer science by the term ‘effective

method’.

Shapiro (2006) provides a helpful discussion that places these attempts at revision in

context. He describes how our various different ideas about effective computation

might have been sharpened in many competing ways. He argues that the notion of

effectiveness exhibited ‘open texture’,meaning that the full range of possible cases to

which it correctly applied was not entirely pinned down by our pre-theoretic intu-

itions. Shapiro’s point about flexibility, however, pertains primarily to the historical

development of the concept: our early, relatively inchoate ideas about what was or

was not an effectivemethod could have been sharpened in different ways. He does

not suggest that today we are free to adopt different conceptions (as suggested by

the revisionist proposals above), or that adopting an alternative, e.g. non-human,

conception of what an effectivemethod is would be equally good for the purposes

of doing computer science or mathematical logic. Indeed, he argues that this is not

the case. In line with others working on the foundations of computing, he suggests

that the idealisation described above – a human working with unbounded time

and computing space – is a way of signalling that one is talking about a particular

subtype of procedure, one that has important pre-existing connections to ideas

about mathematical provability, decidability, and surveyability. Irrespective of the

rise of non-human machines or shifting interests within computer science, there

is a persistent need to refer to this subset ofmethods. The term ‘effectivemethod’

is standardly the one used to fulfil this function.¹5 A revisionist might insist that a

different term should play this role – not ‘effectivemethod’ but something else. In

that case, the argument of this paper may be rephrased to employ that alternative

term.

¹4Some critics of Turing argued that his human-centric characterisation of an effectivemethod

was not too narrow (as the authors above suggest), but too broad: the definition should be narrowed

by adding a requirement that the number of steps taken by the human clerk should be somehow

bounded or determinable in advance. For criticism of such proposals, see Gandy (1988), pp. 59–60;

Mendelson (1963), p. 202; Rogers (1967), p. 5.

¹5For further defence of the human-centric condition regarding ‘effective method’, see Black

(2000); Button (2009); Copeland (2020); Gandy (1988); Shagrir (2022), p. 40; Smith (2013).

10



4 Didn’t Turing define ‘effectivemethod’?

In textbooks on mathematical computation theory, the term ‘effectivemethod’ often

disappears once an appropriate formal predicate has been introduced. It is rare to see

it persist after the first few introductory pages. Its disappearance is often explained

by saying that Alan Turing provided a formal definition, analysis, or replacement
for the informal notion. Thanks to Turing, we can replace ‘effectivemethod’ with a

more formal,mathematically precise term, ‘Turing machine’. A small wrinkle in the

story is that there is more than one definition, analysis, or replacement for ‘effective

method’ available – Church introduced one with the λ-calculus, Gödel introduced

another with general recursive functions, and there are many others. However,

all these formal terms can be shown to be extensionally equivalent, so the choice

between them may be glossed as largely a matter of convention. In light of this,

the informal, human-centric notion of an ‘effectivemethod’ can be systematically

replaced with the formal, precise notion of a ‘Turing machine’ (or an extensionally

equivalent term):

Turing’swork is a paradigm of philosophical analysis: it shows thatwhat

appears to be a vague intuitive notion has in fact a unique meaning

which can be stated with complete precision. (Gandy, 1988, p. 79)

Church’s thesis is the proposal to identify an intuitive notion with a

precise, formal, definition. (Folina, 1998, p. 311)

In 1928, the notion of an algorithm [effectivemethod] was pretty vague.

Up to that point, algorithms were often carried out by human beings

using paper and pencil . . . Attacking Hilbert’s problem forced Turing

to make precise exactly what was meant by an algorithm. To do this,

Turing described what we now call a Turing machine. (Matuschak and

Nielsen, 2019)

If Turing’s thesis is correct, then talk about the existence and non-

existence of effectivemethods can be replaced throughout mathematics,

logic and computer science by talk about the existence or non-existence

of Turing machine programs. (Copeland, 2020)

Turing himself, perhaps in a relatively unguardedmoment, appears to endorse this

too:

. . . one can reduce it [the definition of a solvable puzzle] to the definition

of ‘computable function’ or ‘systematic [effective] procedure’. A defini-

tion of any one of these would define all the rest. Since 1935 a number

of definitions have been given [Turing machines, the λ-calculus, the

µ-recursive functions, etc.], explaining in detail themeaning of one or

11



other of these terms, and these have all been proved equivalent to one

another . . . (Turing, 2004/1954, p. 589)

I call this the ‘replacement theory’ of effectivemethods. If the replacement theory is

correct, then the notion of an effectivemethod can be exchanged for that of a Turing

machine (or an appropriate equivalent) without loss or distortion. The question

this paper asks could then be rephrased as a question about which computational

systems can and cannot instantiate Turing machines (or an appropriate equivalent).

It is important to appreciate that this is not the case. The replacement theory only

holds – and it was only justified by Turing – under certain limited circumstances.

To see this, it should be clear that an entirely unrestricted version of the replacement

theory would not be plausible. ‘Effectivemethod’ and ‘Turing machine’ do not have

the same meaning – they do not have identical semantic content. If they did, it

would have taken little or no insight on Turing’s part to establish a relationship

between them. In order tomake sense of Turing’s work, and the breakthrough that it

represents, one needs to set aside the idea that ‘effectivemethod’ is amere synonym

for ‘Turing machine’. The key question is when it is, and is not, legitimate to replace

one notion with the other.

In Section 9 of his (1936) paper (‘The extent of the computable numbers’), Turing

says that his goal is to show that both a humanworking by hand and amachine (later

known as a Turing machine) can compute the same numbers. If this relationship

between the two were to hold, then a certain kind of intersubstitutability between

the corresponding terms would be warranted. Provided one’s concern is only to

identifywhich numbers are computable, then talk of effectivemethods could be safely

replaced with that of Turing machines (or an extensionally equivalent formalism).

For replacing one term with the other would have no effect on the validity of one’s

reasoning about the extent of the computable numbers.

One of the key arguments that Turing gives to justify this claim is to say that his

machine and a human clerk go through a similar process when they compute a

number. He does not say, however, that they go through an identical process, or that

the operations that a Turing machinemay take include all and only those that an

idealised humanworkermay take. Turing instead suggests that the results the human

worker can obtainwithout insight or ingenuitymustmeet a series of constraints, and

that in light of these constraints, they are also reproducible by an appropriate series

of steps of a Turing machine. He does not say that effective methods are Turing

machines, but that the numbers that can be computed by any effectivemethod turn

out to be the same as the numbers that can be computed by a Turing machine.¹6 If

one’s primary concern is to identify those numbers (i.e. to determinewhich numbers

¹6See Shagrir (2002), pp. 225–226; Shagrir (2022), pp. 36–39.

12



are computable), then talk of effectivemethods can be replaced with that of Turing

machines (or another extensionally equivalent formalism).

It is worth noting that Turing did not argue – he did not need to argue – that the

computational methods available to a Turing machine are identical to themethods

available to a human clerk. Indeed, such a claim would be almost certainly false,

and for reasons independent of the main argument of this paper. The steps and

operations of a Turing machine – the basic operations that change the state of the

head and that makemarks on the tape – are not the only ways for a human or any

other system to effectively calculate a number. The alternativemodels of Church,

Gödel, and others show that there are many other ways to effectively calculate

that do not involve exactly those basic operations. A sequence of basic operations

might, for example, involve reduction operations in the λ-calculus, or minimisation

and recursion operations over the µ-recursive functions. Different computational

formalisms support different types of computational method, and porting methods

between different computational formalisms is often non-trivial. One cannot always

take a computational method that runs on a Turing machine and run exactly the
samemethod, without changes, on a system that operates according to the rules of

the λ-calculus. Onemight attempt to create a similar process – one with different

internal characteristics expressed in terms of the basic operations and idioms of

the λ-calculus – that computes the same function. The computational methods

available to a user of the λ-calculus are not identical to those available to Turing

machines. Given that a human clerk might follow any one of these various effective

methods when computing a number, Turing machines cannot be identified with

effectivemethods.

5 All computational methods are effectivemethods

Here are some examples of the claim that all computational methods are effective

methods:

An algorithm or effectivemethod . . . is a procedure for correctly calcu-

lating the values of a function or solving a class of problems that can

be executed in a finite time and mechanically – that is, without the

exercise of intelligence or ingenuity or creativity . . . A computation is

anything that . . . calculates the values of a function or solves a prob-

lem by following an algorithm or effectivemethod. (Burkholder, 2000,

p. 47)

The logician Turing proposed (and solved) the problem of giving a

characterization of computing machines in the widest sense – mech-

anisms for solving problems by effective series of logical operations.

13



(Oppenheim and Putnam, 1958, p. 19)

We have assumed the reader’s understanding of the general notion of

effectiveness, and indeed itmust be considered as an informally familiar

mathematical notion, since it is involved in mathematical problems

of a frequently occurring kind, namely, problems to find amethod of

computation, i.e., amethod by which to determine a number, or other

thing, effectively. We shall not try to give here a rigorous definition of

effectiveness, the informal notion being sufficient to enable us, in the

cases we shall meet, to distinguish methods as effective or non-effective

. . . The notion of effectiveness may also be described by saying that

an effectivemethod of computation, or algorithm, is one for which it

would be possible to build a computing machine. (Church, 1956, p. 52)

Sometimes computers are called information processors . . . How they

process or manipulate is by carrying out effective procedures . . . Com-

putation [means] the use of an algorithm . . . also called an ‘effective

method’ or a ‘mechanical procedure’ . . . to calculate the value of a func-

tion. (Crane, 2003, pp. 102, 233)

The functional organisation ofmental processes can be characterized

in terms of effective procedures, since themind’s ability to construct

workingmodels is a computational process. (Johnson-Laird, 1983, pp. 9–

10)

. . . [a] procedure admissible as an ‘ultimate’ procedure in a psychological

theory [will fall]wellwithin the intuitive boundaries of the ‘computable’

or ‘effective’ as these terms are presumed to be used in Church’s Thesis.

(Dennett, 1978, p. 83)

The quotations above illustrate that the claim has been made in a variety of contexts.

The final three quotations provide examples of how it can constrain thinking about

themind.¹7

Searle’s Chinese room argument provides a particularly clear example of the latter

phenomenon (Searle, 1980). Searle’s argument may be challenged on many points,

¹7Copeland (1998; 2000) criticises a number of the same authors for committing what he calls

the ‘Church–Turing fallacy’. The fallacy is to assume that any possible physical mechanism could

be simulated by some Turing machine. My claim is that the authors make a second mistake in

that they assume that any possible computational method is also an effectivemethod. Copeland

argues that although ‘effective’ and ‘mechanical’ sometimes appear to be synonyms in mathematical

logic, the relationship between them should be handled with caution. ‘Mechanical’ should be

understood as a term of art and defined in the way described in Section 3. It does not correspond in

any straightforward way to the concept of a physical mechanism.

14



but among them is his assumption that any computational method can be executed

by the human being inside the room who generates Chinese responses. Searle

needs a claim like this in order to connect the specifics of his thought experiment

(a lone human working without insight or ingenuity inside a room) to the general

conclusion that no possible computational method can suffice for understanding. He

needs some way to make the inferential leap from the person inside the room not

understanding Chinese regardless of which method they follow to the conclusion

that no possible computational method could be sufficient for Chinese understanding.

Searle cites Turing’s analysis of computation to justify this key step.¹8 However, as

we have seen in Section 4, the required claim is not attributable to Turing, and as

we will see in the next section, it is false.¹9

However, the identification of computational methods with effectivemethods is

more deep-seated in the philosophical literature than just Searle’s argument. It is

employed not only by the critics of computational accounts of cognition, but also by

their advocates. A common philosophical move when reasoning about a computa-

tional model of cognition is to assume that onemay freely replace any computational

system’s internal workings with a human working by rote without changing the

computational method. Computational methods may always be swapped out during

the course of reasoning, without loss or distortion, for effectivemethods. This has

given rise to a widespread andmistaken form of what I call ‘homuncular thinking’

about computational models of cognition. Here are some examples.

Fodor (1968) describes how an account of knowledge-how, e.g. knowledge of how to

tie one’s shoes, could be given in computational terms. In the course of his analysis,

hemoves between a formulation of that knowledge-how in terms of a computation

performed by the brain and a formulation of it in terms of elementary steps taken

by an imaginary ‘little man’ who reads basic instructions and follows them. The

unstated assumption is that whatever computational method actually underlies

knowledge-how (and that is implemented in the brain), one can be sure that it can

be described, without loss or distortion, in terms of a series of steps taken by a

littleman who reads instructions and follows them without insight or ingenuity.

Fodor does not, of course, suggest that a littleman actually lives inside the head.

However, he does think that talk of ‘the littleman stands as a representative pro tem
for psychological faculties which mediate the integration of shoe-tying behavior

by applying information about how shoes are tied.’ (ibid., p. 629). He does not

consider the possibility that ‘littleman’ talk might provide a blinkered, distorted,

or misleading picture of a computational method. He simply assumes that it can

¹8See Searle (1992), p. 202 and Searle (personal correspondence).

¹9See Copeland (1993); Sprevak (2007) for a detailed analysis of the role of this assumption in the

Chinese room argument.

15



always stand in for a computation methodwithout colouring assumptions about the

kind of computational method that is being considered. In other words, he assumes

that all computational methods are human executable.

Dennett (1978) famously developed a highly influential view known as homuncu-

lar functionalism.²0 In the course of defending the view, he moves between two

different formulations of it that, like Fodor, he treats as freely interchangeable. Ac-

cording to one formulation, Dennett characterises homuncular functionalism as

the view that a cognitive capacity can be explained by breaking it down in terms of

operations of simpler computational subsystems, which are each explained in terms

of the operations of simpler subsubsystems, and so on, until one reaches systems

whose operations are so basic that they do not require further explanation of this

kind. This model of explanation is treated as equivalent to the idea that one should

explain the cognitive capacity by breaking it down into the capacities of a series of

notional ‘littlemen’ inside the head who each work without insight or ingenuity.

The unstated assumption is, again, that whatever computational processes actually

underlie cognition, theymay always be described – without any loss or distortion –

as a series of operations capable of being executed by littlemen each working to an

effectivemethod.

Block (1978) provides a range of arguments against computational theories of con-

sciousness based on intuitions about what a collection of littlemen can and cannot

do. In his ‘homunculi-headed’ thought experiment, the computation that normally

takes place inside a human brain via neuronal activity is imagined to be reproduced

by a sequence of steps taken by a group of little men each working according to

an effectivemethod. Block argues that is implausible that this group of littlemen

would instantiate a new qualitative conscious experience, and hence that any purely

computational account of conscious experience is unlikely to be true. A crucial

premise in Block’s argument is, again, that such a collection of little men could

reproduce, without loss or distortion, any computational method, and in particular

any computational method allegedly characteristic of conscious experience. Like

Fodor and Dennett, Block does not justify this assumption. He simply takes for

granted that all computational methods are human executable.

Why do these authors make this assumption?

One possible explanation might come from misguided intuitions about multiple

realisability. Computational methods aremultiply realisable: they can be implemen-

ted in more than one physical system. They aremultiply realisable because the kind

of description that is needed to characterise a computational method does not tie it

²0See Lycan (1981) for the name ‘homuncular functionalism’ and a clear reconstruction of the

view.

16



to being implementable in just one physical medium. When the steps of a Turing

machine are described, there is no requirement intrinsic to that description that

a system which implements those steps must bemade out of, for example, lead or

wood or steel. In other words, computational methods are not tied by virtue of their

specification to being implemented in one type of physical medium. However, there

is a different andmuch stronger claim about multiple realisability that is regularly

associated with computation and which is much less plausible. This second claim

is that any computational method can be realised, in principle, in any physical

medium. As Putnam put it: ‘We could be made of Swiss cheese and it wouldn’t

matter’ (Putnam, 1975, p. 291). In the specific case of the human clerk, this second

claim would suggest that any computational method could be implemented in the

specific physical system of the clerk (provided they were to take an appropriate

sequence of steps).

However, unlike the first claim, there is no reason to think that this second claim

is true. It does not follow from computational methods being multiply realisable:

just because it is possible for a computational method to be implemented inmore
than one physical medium that does not entail that it could be implemented in any
medium(or in a human clerk). Different physical media have different causal powers.

Those causal powers afford them the ability to implement some computational

operations, but not others. There is no reason to think that an idealised human

clerk has the causal powers to implement any possible computational method.²¹

Before closing this section, it is worth saying a few words about the definition of the

term ‘algorithm’. A number of the authors cited above suggest that ‘algorithm’ should

be regarded as a synonym for both ‘effectivemethod’ and ‘computationalmethod’. My

claim is that ‘effectivemethod’ and ‘computational method’ have different meanings

and different extensions. If we are to distinguish these two terms, how then should

we understand ‘algorithm’? Should ‘algorithm’ be treated as a synonym for ‘effective

method’, as suggested by Button (2009), Smith (2013), and Cutland (1980); or should

it be treated as a synonym for ‘computational method’, as suggested by Copeland

(1997), Copeland and Sylvan (1999), Soare (1999), and Gurevich (2011)?²² In this

paper, I will follow the latter convention and treat ‘algorithm’ as a synonym for

the broader term, ‘computational method’. This will allow us to say that there are

²¹See Shagrir (1998) for a helpful analysis and criticism of this second claim about themultiple

realisability of computation.

²²See also Blass and Gurevich (2006):

In fact the notion of algorithm is richer these days than it was in Turing’s days. And

there are algorithms . . . not covered directly by Turing’s analysis, for example, al-

gorithms that interact with their environments, algorithms whose inputs are abstract

structures, and geometric or,more generally, non-discrete algorithms. (p. 31)

17



quantum computing algorithms, even if there are no quantum computing effective

methods. This convention has the virtue that it preserves how computer scientists

already talk about quantum computing methods. Nothing important turns on this

decision, however, and the argument of this paper may be rephrased if one prefers

to define the term ‘algorithm’ differently.²³

6 Quantum computations that are not effectivemethods

Quantum computers are able to move from input to output using computational

methods that are not open to any idealised human clerk. A human working by hand

may be able to compute the same functions as a quantum computer – theymay be

able to simulate a quantum computer’s input–output behaviour – but they are not

able to use the same computational method to do so.

Deutsch, Ekert and Lupacchini (2000) describe a simple quantum computer that

uses a non-effectivemethod. The computer uses quantum interference to compute

the NOT function. The NOT function maps an input of 0 to an output of 1 and

an input of 1 to an output of 0. Clearly, there is no question here of computing

a function that cannot also be computed by hand. The question is whether the

computational method that the quantum computer uses to calculate NOT could

also be used by an idealised human clerk.

Deutsch’s proposed quantum computer is composed of two half-silveredmirrors

(mirrors that reflect a photon with 50% probability and allow a photon to pass

through with 50% probability). The presence of a photon along one path to a half-

silveredmirror denotes an input of 1, the presence of a photon along the other path

denotes an input of 0; the presence of a photon along one exit path denotes an

output of 1, the presence of a photon along the other exit path denotes an output of

0.

A single half-silvered mirror implements a quantum computational gate that

Deutsch calls

√
NOT. If the input to the gate is 0, then the output is measured as

either 0 or 1 with 50% probability; similarly, if the input is 1, the output is measured

as either 0 or 1 with 50% probability. Formally, if the input is prepared in quantum

state ∣0⟩ (i.e. 0), then the output occurs in superposition state (∣0⟩ − i ∣1⟩)/
√

2

(which, on measurement, results in a 0 or 1 with 50% probability). If the input

is prepared in quantum state ∣1⟩ (i.e. 1), then the output occurs in superposition

state (−i ∣0⟩ + ∣1⟩)/
√

2 (which also, on measurement, results in a 0 or 1 with 50%

²³It isworthnoting that the term ‘algorithm’has a long history of its own and semantic associations

that predate its current connections with either ‘computational method’ or ‘effectivemethod’. See

Chabert et al. (1999); Knuth (1972).

18



probability).²4

If two half-silveredmirrors are connected together in series, as shown in Figure 1,

then the overall system computes NOT (0→ 1, 1→ 0). If one did not know better,

one might have guessed that this arrangement would produce a random result,

perhaps with the output evenly distributed over 0s and 1s. Individual half-silvered

mirrors appear to be randomisers, so onemight guess that chaining two mirrors

together would produce equally random results. However, due to the rules by which

superposition states evolve in quantummechanics, the relevant states interfere with

each other, so that an input of 0 to the first mirror always yields an output of 1, and

an input of 1 to the first mirror always yields an output of 0. This occurs even if

a single photon is sent into the system, a phenomenon known as single-particle

interference.

Formally, this can be seen as follows. The first half-silvered steps maps ∣0⟩→ (∣0⟩ −
i ∣1⟩)/

√
2. The second half-silveredmirror applies the same quantum operator to

that superposition state,mapping (∣0⟩− i ∣1⟩)/
√

2→ −i ∣1⟩, which, on measurement,

results in an output of 1 with 100% probability (∣ − i∣2 = 1). Combining the two

operations, if the input is 0, then the output is 1. Similarly, the first half-silvered

mirror maps ∣1⟩ → (−i ∣0⟩ + ∣1⟩)/
√

2. The second half-silveredmirror applies the

same operator,mapping (−i ∣0⟩+ ∣1⟩)/
√

2→ −i ∣0⟩, which, on measurement, results

in an output of 0 with 100% probability.

Input 0

Input 1 

Output 0

Output 1

Figure 1: An example of a quantumNOT computer.

The same function, NOT, can of course be calculated by a human, but not using the

samemethod.

²4If a superposition state α ∣0⟩ + β ∣1⟩ is measured, then the result is 0 with probability ∣α∣2, and 1

with probability ∣β∣2, with ∣α∣2 + ∣β∣2 = 1. A
√
NOT gate performs the operation on the quantum

state vector (
α

β
) described by the complex-valuedmatrix

1
√

2

(
1 −i

−i 1
).

19



It is important to stress that the claim here is not about the physical implementation

of the quantum computation. The claim is not that the same photon-and-mirrors
process cannot be reproduced by an unaided human. That is obviously true. The

claim is that the same abstract computational method cannot be used. There is

no suitably equivalent physical process that a human worker can engage in, even

if they are idealised in themanner suggested, that calculates input–output in the

same way. The computational method used by the quantum NOT computer is

multiply realisable: it might be implemented with photons, electrons, fields, or

atomic nuclei. All of these physical resources exhibit interference patterns that

might be exploited to compute NOT using this computational method. But that

method cannot be implemented in an unaided human working by hand – or at

least, not in a controllable way. The computational method for calculating NOT is

multiply realisable, but it cannot be realised at will in an unaided human.²5

Interference is one non-effective computing method. Another example is quantum
parallelism. Quantum parallelism underlies the claimed speedup of some quantum

computers over more conventional computers.

Quantum parallelism allows a quantum computing system to calculate multiple

values of a function f (x) in a single step. In the simplest case, if an arbitrary 1-bit

function f (x) is applied to an input superposition state (∣0⟩ + ∣1⟩)/
√

2, then the

output state would include (∣0, f (0)⟩ + ∣1, f (1)⟩)/
√

2. This state contains informa-

tion about both f (0) and f (1), but it was obtained using only a single application

of f (x).²6 In amore complex case, every value of an arbitrary n-bit f (x) could be

calculated using a single application of f (x). If n + 1 bits are prepared in a super-

position state, then one application of f (x) would result in the superposition state

(2−n/2)∑x ∣x , f (x)⟩, a state that encodes all values of f (x).²7 Quantum parallelism

is a non-effective method that allows a quantum computing system to calculate

all values of an arbitrary function in one step. It is not a computing method freely

available to a human working by hand.

A well-known limitation on methods that employ this kind of quantum parallelism

is that it is only possible to recover a single value of f (x) from the superposition

²5Cf. Nielsen and Chuang (2010), p. 50: ‘. . . it is tempting to dismiss quantum computation as yet

another technological fad . . . This is amistake, since quantum computation is an abstract paradigm

for information processing that may havemany different implementations in technology.’

²6More accurately, a unitary (reversible) operator U f is applied to the input, U f : ∣x , y⟩ →
∣x , y ⊕ f (x)⟩, where ⊕ indicates addition modulo 2. U f is used because there is no guarantee

that an arbitrary f itself is unitary, and the evolution of a quantum mechanical system must be

governed by unitary operators. This modification does not affect the point above.

²7See Nielsen and Chuang (2010), pp. 30–32.

20



state (2−n/2)∑x ∣x , f (x)⟩ bymeasurement.²8 This limitation, however, is far from

fatal to the use of quantum parallelism in computation. That is because before

measurement all manner of computational operations might be performed on

the quantum state that encodes all values of f (x). These operations might affect

different components of the superposition state in different ways. For example,

certain components of the superposition statemight be arranged to interfere with

one another. These interference relations might be constructive or destructive,

amplifying the probability of an outcome, or suppressing it. If correctly arranged,

such interference relations might combine to allow a quantum computer to calculate

some ‘global’ property of f (x): amathematical property that depends on multiple

values of f (x) – one that would require a conventional computer to explicitly

evaluate f (x) for several values of x individually. Consequently, even though only

a single value of f (x) can be recovered directly viameasurement, all values of f (x)
are in principle available to compute global properties of f (x), rendering this a

potentially useful form of parallel computation.

The Deutsch–Jozsa algorithm provides an example of how this might work.²9 Sup-

pose that Alice picks a function f (x) ∶ {1, . . . , n}→ {0, 1} that is either balanced or

constant and keeps it secret. A constant function yields the same value for all x; a

balanced function yields 1 for half of x, and 0 for the other half. Bob can send Alice

a number and ask her for the value f (x). Bob’s task is to determine, with as few

queries as possible,whether Alice’s function is constant or balanced. Using quantum

parallelism, he can solve the problem using just one evaluation of f (x). In the clas-

sical case, he requires at least 2n/2+ 1 operations in order to solve the same problem.

Using quantumparallelism, Bob can applyAlice’s f (x) once to a superposition state

which is then passed through a series of Hadamard gates.³0 If Alice’s function is

balanced, the various components of the superposition state∑x ∣x , f (x)⟩ interfere

with each other to yield the answer 0. If her function is constant, the components

of the superposition state that encode all the values of f (x) interfere to yield the

answer 1.³¹ The full details of the Deutsch–Jozsa algorithm are complex, but the

key point is that the way in which Bob solves the problem requires only a single

application of f (x), which is not available to a human working by hand.

²8Strictly, a pair of values can be recovered, x , f (x). The output is a pair because the evolution of

the quantum state is governed by unitary operators (quantum computations must be reversible).

²9See Cleve et al. (1998); Deutsch and Jozsa (1992). A simplified version of the algorithm was first

proposed by Deutsch (1985).

³0A Hadamard gate is a quantum operator that works in a similar way to Deutsch’s

√
NOT

operator, but defined over the real numbers. The transformation provided by a Hadamard gate

is given by the real-valuedmatrix
1
√

2

(
1 1

1 −1
). Like Deutsch’s

√
NOT, aHadamard gatemay be

physically implemented with half-silveredmirrors; see Barz (2015).

³¹See Nielsen and Chuang (2010), pp. 32–36 for the details of the algorithm.

21



The problem that the Deutsch–Jozsa algorithm solves is of little practical interest,

but similar techniques that employ quantum parallelism can be used to compute

other,more useful properties. Shor’s algorithm, for example, uses quantum parallel-

ism to find the prime factors of integers (Shor, 1999). Shor’s algorithm factorises

integers in polynomial time,making it almost exponentially faster than themost effi-

cient known non-quantum factorisation method (the general number field sieve).³²

Shor’s algorithm correspondingly has a differentworst-case complexity profile to any

known effectivemethod for factoring numbers. Applying the principle described in

Section 2.2 – that different worst-case complexity profiles indicate different compu-

tational methods – it seems reasonable to conclude that Shor’s algorithm is different
from any known effectivemethod. It is an example of a computational method that,

as far as we know, cannot be executed by a suitably idealised human clerk.

Just aswith interference,what is at issue here is notwhether an unaided human could

reproduce the same physical processes that take place inside a specific quantum

computer. An unaided human is clearly not the same as an arrangement of half-

silveredmirrors. The question at issue is whether that same computing method could

be instantiated by a human clerk. Could a human following an effectivemethod

instantiate a computing method like Shor’s algorithm? Quantum parallelism is a

computational method that is multiply realisable: it might be implemented with

photons, electrons, or atomic nuclei. Can it also be implemented by an unaided

human working to an effectivemethod? The answer appears to be no. The fact that

such a human cannot, to our knowledge, engage in any process that would factorise

numbers with the same worst-case complexity profile is strong evidence that they

cannot instantiate the same computational method.

Quantum parallelism should not be conflated with other forms of parallelism found

in modern electronic computers. In amodern electronic computer,multiple compu-

tational units are often executed simultaneously to computemore than one value of

f (x)within a single time step. In contrast, in a case of quantumparallelism, a single

computational unit is executed once to evaluate all values of f (x). Quantumparallel-

ism should also not be conflated with a non-deterministicmethod of computation.

A quantum computer that uses the superposition state (∣0, f (0)⟩ + ∣1, f (1)⟩)/
√

2 is

not the same as a non-deterministic computer that yields f (0)with 50% probability

and f (1)with 50% probability. In the case of a non-deterministic computer, the two

alternatives f (0) and f (1) necessarily exclude each other: themachine computes

either f (0) or f (1) on any given run. In a device that uses quantum parallelism,

the two alternatives might interfere with each other to create an output that reflects

a global property of f (x) – an output that would require amachine to know both

³²Ibid.

22



f (0) and f (1).³³

The two examples described in this section – quantum interference and quantum

parallelism – are not meant to be an exhaustive list of all non-effective features of

quantum computation. Other potential features might include quantum entangle-

ment, quantum teleportation, or counterfactual computation.³4 Just like interference

and quantumparallelism, these features aremultiply realisable – they are not specific

to any particular hardware implementation. Just like interference and quantum

parallelism, it is hard to see how theymight be implemented at will in an unaided

human.

Quantum computers are unlikely to be the only systems that use non-effective

computational methods. Other possible examples might include DNA computers

(Adleman, 1994; Lipton, 1995), enzyme-based computers (Barrett, 2005), slime

moulds (Adamatzky, 2016), fungi (Adamatzky, 2018), reservoir computers (Tanaka

et al., 2019), and optical computers (Wu et al., 2014). An anonymous referee sugges-

ted that analog computers provide good examples of systems that use non-effective

computing methods (Ulmann, 2013). Shagrir (2022) claims that the Game of Life is

another case. According to Shagrir, an unbounded number of cells inside the Game

of Life need to be updated simultaneously at each time step. He argues that this

requires an unbounded number of parallel operations, which, he notes, building on

work by Gandy (1980), cannot be executed by a human clerk.³5 Gurevich suggests

that although the idea of a computational method (‘algorithm’) originated with

human-executablemethods, it has since been generalised to other methods, and it

continues to expand in ways that are hard to delimit:

In addition to classical sequential algorithms, in use from antiquity, we

have now parallel, interactive, distributed, real-time, analog, hybrid,

quantum, etc. algorithms. New kinds of numbers and algorithms

may be introduced. The notions of numbers and algorithms have not

crystallized (and maybe never will) to support rigorous definitions.

(Gurevich, 2011, p. 32)

The argument of this paper is not intended to suggest that quantum computing

methods are the only, or themost central, examples of non-effective computational

methods. However, the case of quantum computing is a particularly helpful one

³³For further discussion of this point, see Nielsen and Chuang (2010), pp. 30–34.

³4See Ekert and Jozsa (1998) for algorithms that use quantum entanglement, and Bennett et

al. (1993), Gottesman and Chuang (1999) for algorithms that use teleportation. Counterfactual

computation is a counterintuitive method in which the intermediate steps of the computations

do not take place in the actual world (according to measurement), yet the desired output is still

produced; for a proposed application, seeHosten et al. (2006).

³5Shagrir (2022), pp. 46–47.

23



with which to make the case that not all computational methods are effectivemeth-

ods. This is because it allows us to apply a relatively clear-cut, quantitative, and

widely accepted principle – that different worst-case complexity profiles indicate

different computational methods – to settle hard questions about how to individuate

computational methods.

Any claim that a computational method is not an effective method is liable to

face scrutiny or some degree of scepticism regarding its specific understanding of

how to individuate computational methods. As noted in Section 2.2, this involves

defence over a complex and unsettled territory. It is often hard to say definitely

whether two computational methods are the same or not. From one perspective

– at a particular level of abstraction, or with a focus on the similarity of certain

features rather than others – two computational methods might appear to be the

same. However, if looked at in a different way – at a different level of abstraction, or

with an emphasis on different features – those samemethods might be classified

as different.³6 In general, it is not obvious what counts as a ‘superficial’ versus a

‘genuine’ difference between the internal workings of computing methods (e.g., in

Shagrir’s case it is not obvious that the Game of Life really does require all cells to

be updated simultaneously). The question therefore always potentially arises about

whether a suggested computational method is genuinely different from an effective

method – whether it is a legitimate case of a non-effective computational method –

or only one that differs in some superficial respects.

The principle described in Section 2.2 provides a way of cutting through this uncer-

tainty. Different complexity profiles provide a sufficient reason for distinguishing

between computational methods that compute the same function. This principle

only really gets its teeth, however, in the quantum computing case. Generally speak-

ing, it is common inside complexity theory to assume that any two ‘reasonable’

models of computation are able to simulate each other with at most a polynomial

penalty in time or space. This is sometimes known as the Cobham–Edmonds thesis

or the extended Church–Turing thesis (Goldreich, 2008; Yao, 2003). It is sometimes

glossed as showing that the abstract computational method ‘does not matter’ to

the worst-case complexity profile associated with a task – worst-case complexity

profiles are robust under changes in computing method or computing paradigm

(Goldreich, 2008, pp. 33–34). However, quantum computers appear to offer an

exception to this (Aharonov and Vazirani, 2013; Bernstein and Vazirani, 1997; Ya-

makawa and Zhandry, 2022; Yao, 2003). Some quantum computational methods

provide near-exponential speedup for some problems (e.g. factorisation). They

³6I am assuming themethods in question have the same overall input–output profile and that

one is trying to individuate them based on their internal workings. As discussed in Section 2.1, I

am setting aside the use of hypercomputers for establishing the claim that not all computational

methods are effectivemethods.

24



appear to be examples of cases where the computational method does matter to

the worst-case complexity profile associated with solving a task. My claim is that

because of these differences in complexity profile we have good reason to think

that we have genuinely different computing methods on our hands. We can apply

the principle from Section 2.2 to show that a quantum computational method is

different from any effectivemethod. This kind of result is not known for other types

of non-human computing method. As such, quantum computing methods stand

out as particularly clear-cut, egregious cases of computational methods that are not

effectivemethods.

7 Simulating the quantum system by hand

Someonemight object to the treatment of the computational methods described in

the previous section by replying that the relevant quantum computational methods

are executable by a human. All a human would need to do is calculate the evolution

of the relevant quantum wave function. This is exactly what we appeared to do in

the case of Deutsch’s NOT quantum computer: we applied the relevant quantum

operator step-by-step (by performing matrixmultiplication) to calculate the out-

put state from an input state. In principle, a similar kind of procedure could be

performed for the Deutsch–Jozsa algorithm or for Shor’s algorithm. Calculating

the evolution of a quantum wave function by hand can be extremely laborious, but

there is no reason to think it cannot be done, in principle, with an effectivemethod.

There is no overtly ‘non-effective’ mathematical step within any of the formal theory

of quantummechanics. Hence, the objection goes, there is no reason to think that a

suitably idealised human clerk cannot reproduce the computational methods of any

quantum computer.

It is important tonote that although itmight bepossible to calculate the evolution of a

quantum computer’s wave function by hand, doing so is not the same computational

method as letting a quantum computer evolve by itself. There is a difference between

applying the relevant quantumoperators by hand (e.g., by doing a sequence ofmatrix

multiplications) and letting the target physical system run to produce its output. That

there is a difference can be justified by appealing, again, to the principle, described

in Section 2.2.

Feynman (1982) famously showed that simulating the evolution of a quantum sys-

tem by hand is a computationally intractable problem. This means that a quantum

computer undergoing natural evolution of its wave function, and a human simulat-

ing it by an effectivemethod, e.g. by repeatedly performing matrixmultiplications,

have qualitatively different worst-case complexity profiles. The human working by

hand will use exponentiallymore space (or time) than the quantum computer to

25



produce the same overall output. Calculating the evolution of an n-bit quantum

system by hand would require (at least) 2n classical bits.³7 For a quantum computer

with 400 quantum bits (say, consisting of 400 atomic nuclei), an effectivemethod

that calculates the wave function by hand would requiremore bits for storage than

there are estimated particles in the universe. The relevant issue here is not, however,

a practical limitation on storage – after all, the imagined clerk is allowed unlimited

space and time. The problem is about how the clerk’s resource use grows with the

size of the problem. This growth is what the worst-case complexity profiles meas-

ure and it is what signals that these are different methods for tackling the same

problem. Any effectivemethod that an idealised human might adopt for stepping

through the evolution of the quantum system by hand will be exponentially less effi-

cient than running the quantum computer itself. Therefore, applying the principle

from Section 2.2, running the quantum computation is not the same – in terms of

which computational method is instantiated – as having a human work through the

evolution of its wave function by hand.

8 Conclusion

In summary, the argument of this paper is as follows. It relies on two premises:

1. If two putative computational methods have different worst-case complexity

profile, then they are genuinely different computational methods.

2. There are abstract quantum computational methods that have different worst-

case complexity profiles to that of any known effectivemethod.

The conclusion follows that:

3. There are computational methods that are not effectivemethods.

Premise 1 was introduced and defended in Section 2.2. I argued that it is embed-

ded as a principle into the practice of both theoretical and engineering computer

science. Knuth (1981) suggests that it may be a defining feature of thinking like

a computer scientist rather than thinking like amathematician. Premise 2 is not

proven, but widely believed to be true within the quantum computing community.

It is widely thought that certain quantummethods (e.g. Shor’s algorithm) provide

a true ‘quantum advantage’ in terms of worst-case space or time usage. I discuss

examples of suchmethods, and the unusual basic steps that they employ, in Sections

6 and 7.

Someone might take issue with either premise 1 or 2. I have supplied here some

reasons why someonemight accept them, but I offer nothing original. The primary

³7Nielsen and Chuang (2010), pp. 48, 204–206.

26



argument of this paper is that if they are true, then conclusion 3 follows.

It is worth stressing that neither premise 1 nor premise 2 reference the specifics of

the physical implementing hardware. Quantum computing methods are commonly

implemented in non-human physical systems (e.g. with mirrors and photons).

However, the argument of this paper is not that quantum computing methods are

not effective because they are implemented in some non-human physical system. It

is not merely the non-human character of their typical implementation that means

that quantum computingmethods are not effectivemethods. A non-human physical

system (e.g. an electronic PC) might implement an effective computational method

and the relevant quantummethods might be implemented in many – an unlimited

number of – different kinds of physical system. The argument of this paper is rather

that quantum computing methods cannot be implemented in a suitably idealised

human clerk because, at least to the best of our knowledge, the required clerk cannot

implement any computational method that displays the sameworst-case complexity

profile.

In Section 9 of his 1936 paper, Turing wrote:

The real question at issue is ‘What are the possible processes which can

be carried out in computing a number?’ (Turing, 1936, p. 249)

Turing had in mind a human computer (a ‘computor’, to use Gandy’s term (1988)),

and he went on to answer this question by describing the operations andmethods

of what has come to be known as a Turing machine. This appears to suggest that

the possible processes which can be carried out in effectively computing a number
should be identified with themethods that can be executed by a Turing machine. As

Wittgenstein said, ‘Turing’s . . . machines are humans who calculate.’ (Wittgenstein,

1980/1947, §1096).

We have seen that care should be taken in how this claim is interpreted. The possible

processes that might be carried out in computing a number outrun both (i) those

that might be carried out by a Turing machine and (ii) those that might be carried

out by an idealised human following an effectivemethod. There are processes for

computing that are human executable but not Turing-machine executable (e.g. that

involve sequences of operations in the λ-calculus, or over the µ-recursive functions)

and there are processes for computing that are not executable by a human but which

are executable by certain other systems (e.g. quantum computers).

Turing ignored these issues in his 1936 paper because his focus was on relationships

between computing processes of extensional equivalence. If one’s primary focus is

on questions of computability, then these fine-grained differences between compu-

tational methods – differences that do not affect which numbers are computable

– can be ignored. However, if one is interested in differences in internal workings

27



between computing methods – as is commonly the case in philosophy ofmind and

in many areas of computer science – then an identification between computing

methods and effectivemethods cannot bemade.

Acknowledgements

I would like to thank three anonymous referees for their helpful comments on

this paper. An early version of the paper greatly benefited from feedback at the

Philosophy Workshop at the Department of History and Philosophy of Science,

University of Cambridge.

Bibliography

Adamatzky, A., ed. (2016). Advances in PhysarumMachines. Berlin: Springer.

— (2018). “Towards fungal computer”. In: Interface Focus 8, p. 20180029. doi:

10.1098/rsfs.2018.0029.

Adleman, L. M. (1994). “Molecular Computation of Solutions to Combinatorial

Problems”. In: Science 266, pp. 1021–1024.

Aharonov, D. and U.Vazirani (2013). “Is quantummechanics falsifiable? A computa-

tional perspective on the foundations of quantummechanics”. In:Computability:
Turing, Gödel, Church, and Beyond. Ed. by B. J. Copeland, C. J. Posy andO. Shag-

rir. Cambridge,MA:MIT Press, pp. 329–349.

Barrett, H. C. (2005). “Enzymatic Computation and Cognitive Modularity”. In:

Mind and Language 20, pp. 259–287.

Barz, S. (2015). “Quantum computing with photons: introduction to the circuit

model, the one-way quantum computer, and the fundamental principles of

photonic experiments”. In: Journal of Physics B: Atomic,Molecular and Optical
Physics 48, p. 083001.

Bennett, C. H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters

(1993). “Teleporting an unknown quantum state via dual classical and Einstein-

Podolsky-Rosen channels”. In: Physical Review Letters 70, pp. 1895–1899.

Bernstein, E. and U. Vazirani (1997). “Quantum complexity theory”. In: SIAM
Journal on Computing 26, pp. 1411–1473.

Black, R. (2000). “Proving Church’s Thesis”. In: PhilosophiaMathematica 8, pp. 244–

258.

28

https://doi.org/10.1098/rsfs.2018.0029


Blass, A., N. Dershowitz and Y. Gurevich (2009). “When are two algorithms the

same?” In: The Bulletin of Symbolic Logic 15, pp. 145–168.

Blass, A. and Y. Gurevich (2006). “Algorithms: A quest for absolute definitions”.

In: Church’s thesis after 70 years. Ed. by A. Olszewski, J.Woleński and R. Janusz.

Heusenstamm: Ontos Verlag, pp. 24–57.

Block,N. (1978). “Troubles with Functionalism”. In: Perception and Cognition: Issues
in the Foundations of Psychology,Minnesota Studies in the Philosophy of Science.
Ed. by C.W. Savage.Vol. 9. Minneapolis: University ofMinnesota Press, pp. 261–

325.

— (1981). “Psychologism and Behaviorism”. In: Philosophical Review 90, pp. 5–43.

Boolos, G., J. P. Burgess and R. C. Jeffrey (2007). Computability and Logic. 5th ed.

Cambridge: Cambridge University Press.

Burkholder, L. (2000). “Computing”. In: A Companion to the Philosophy of Science.
Ed. by W. H. Newton-Smith. Oxford: Blackwell, pp. 44–55.

Button, T. (2009). “SAD Computers and two versions of the Church-Turing Thesis”.

In: The British Journal for the Philosophy of Science 60, pp. 765–792.

Chabert, J.-L., C.Weeks, E. Barbin, J. Borowczyk,M. Guillemot, A. Michel-Pajus,

A. Djebbar and J.-C. Martzloff (1999). A History of Algorithms: From the Pebble
to theMicrochip. Berlin: Springer-Verlag.

Church, A. (1941). The Calculi of Lambda-Conversion. Princeton, NJ: Princeton

University Press.

— (1956). Introduction to Mathematical Logic. Princeton, NJ: Princeton University

Press.

Cleland, C. E. (2002). “On effective procedures”. In:Minds andMachines 12, pp. 159–
179.

— (2004). “The concept of computability”. In: Theoretical Computer Science 317,

pp. 209–225.

Cleve, R., A. Ekert, C. Macchiavello andM. Mosca (1998). “Quantum algorithms

revisited”. In: Proceedings of the Royal Society, Series A 454, pp. 339–354.

Copeland, B. J. (1993). “The curious case of the Chinese gym”. In: Synthese 95, pp. 173–

186.

— (1997). “The broad conception of computation”. In:AmericanBehavioral Scientist
40, pp. 690–716.

29



Copeland, B. J. (1998). “Turing’s O-machines, Searle, Penrose and the brain”. In:

Analysis 58, pp. 128–138.

— (2000). “Narrow versus wide mechanism”. In: The Journal of Philosophy 97,

pp. 5–32.

— (2002). “Hypercomputation”. In:Minds andMachines 12, pp. 461–502.

— (2004). “Hypercomputation: philosophical issues”. In: Theoretical Computer
Science 317, pp. 251–267.

— (2020). “The Church-Turing thesis”. In: The Stanford Encyclopedia of Philosophy.
Ed. by E. N. Zalta. Summer 2020. url: https://plato.stanford.edu/archives/

sum2020/entries/church-turing/.

Copeland, B. J. and D. Proudfoot (1999). “Alan Turing’s forgotten ideas in computer

science”. In: Scientific American 280, pp. 77–81.

Copeland, B. J. and R. Sylvan (1999). “Beyond the universal Turing machine”. In:

Australasian Journal of Philosophy 77, pp. 46–66.

Crane, T. (2003). TheMechanical Mind. 2nd ed. London: Routledge.

Cutland, N. (1980). An Introduction to Recursive Function Theory. Cambridge: Cam-

bridge University Press.

Davis,M. (2004). “Themyth of hypercomputation”. In:Alan Turing: Life and Legacy
of a Great Thinker. Ed. by C. Teuscher. Berlin: Springer, pp. 195–211.

Dean,W. (2016). “Algorithms and themathematical foundations of computer sci-

ence”. In: Gödel’s Disjunction: The Scope and Limits ofMathematical Knowledge.
Ed. by L. Horsten and P.Welch. Oxford: Oxford University Press, pp. 19–66.

Dennett, D. C. (1978). Brainstorms. Cambridge,MA:MIT Press.

Deutsch, D. (1985). “Quantum Theory, the Church–Turing Principle and the Uni-

versal Quantum Computer”. In: Proceedings of the Royal Society, Series A 400,

pp. 97–117.

Deutsch, D., A. Ekert and R. Lupacchini (2000). “Machines, Logic and Quantum

Physics”. In: Bulletin of Symbolic Logic 3, pp. 265–283.

Deutsch, D. and R. Jozsa (1992). “Rapid solution of problems by quantum computa-

tion”. In: Proceedings of the Royal Society, Series A 439, pp. 553–558.

Ekert, A. and R. Jozsa (1998). “Quantum algorithms: entanglement-enhanced in-

formation processing”. In: Philosophical Transactions of the Royal Society of
London, Series A 356, pp. 1769–1782.

30

https://plato.stanford.edu/archives/sum2020/entries/church-turing/
https://plato.stanford.edu/archives/sum2020/entries/church-turing/


Etesi, G. and I. Németi (2002). “Non-Turing computations viaMalament–Hogarth

space-times”. In: International Journal of Theoretical Physics 41, pp. 341–370.

Feynman,R. P. (1982). “Simulating physicswith computers”. In: International Journal
of Theoretical Physics 21, pp. 467–488.

Fodor, J. A. (1968). “The appeal to tacit knowledge in psychological explanation”.

In: The Journal of Philosophy 65, pp. 627–640.

Folina, J. (1998). “Church’s Thesis: Prelude to a Proof”. In: PhilosophiaMathematica
6, pp. 302–323.

Gandy, R. O. (1980). “Church’s thesis and principles ofmechanisms”. In: The Kleene
Symposium. Ed. by J. Barwise,H. J. Keisler and K. Kunen. Amsterdam: North

Holland, pp. 123–145.

— (1988). “The confluence of ideas in 1936”. In: The Universal Turing Machine: A
Half-Century Survey. Ed. by R. Herken. Oxford: Oxford University Press, pp. 55–

111.

Goldreich, O. (2008). Computational Complexity: A Conceptual Perspective. Cam-

bridge: Cambridge University Press.

Gottesman, D. and I. L. Chuang (1999). “Quantum teleportation is a universal

computational primitive”. In: Nature 402, pp. 390–393.

Gurevich,Y. (1999). “The sequentialASM thesis”. In:Bulletin of EuropeanAssociation
for Theoretical Computer Science 67, pp. 93–124.

— (2000). “Sequential Abstract StateMachines capture sequential algorithms”. In:

ACM Transactions on Computational Logic 1, pp. 77–111.

— (2011). “What is an algorithm?” In: SOFSEM 2012: Theory and Practice of Com-
puter Science. LectureNotes in Computer Science, vol 7147. Ed. byM. Bieliková,G.

Friedrich,G. Gottlob, S. Katzenbeisser andG. Turán. Berlin: Springer, pp. 31–42.

Hosten, O.,M. T. Rakher, J. T. Barreiro, N. A. Peters and P. G. Kwiat (2006). “Coun-

terfactual quantum computation through quantum interrogation”. In: Nature
949-952.

Johnson-Laird, P. N. (1983).Mental Models.Cambridge: Cambridge University Press.

Knuth, D. E. (1972). “Ancient Babylonian algorithms”. In: Communications of the
ACM 15, pp. 671–677.

— (1981). “Algorithms in modern mathematics and computer science”. In: Al-
gorithms in Modern Mathematics and Computer Science. Ed. by A. P. Ershov and

D. E. Knuth. Berlin: Springer-Verlag, pp. 82–99.

31



Knuth, D. E. (1997). The Art of Computer Programming, Volume 1: Fundamental
Algorithms. 3rd ed. Upper Saddle River, NJ: Addison-Wesley.

Lipton, R. J. (1995). “DNA solution of hard computational problems”. In: Science
268, pp. 542–545.

Lycan,W. G. (1981). “Form, Function, and Feel”. In: The Journal of Philosophy 78,

pp. 24–50.

Marr, D. (1982). Vision. San Francisco, CA:W. H. Freeman.

Matuschak, A. andM. A. Nielsen (2019). Quantum Computing for the Very Curious.
San Francisco, CA. url: https://quantum.country/qcvc.

Mendelson, E. (1963). “On some recent criticismof Church’s Thesis”. In:Notre Dame
Journal of Formal Logic 4, pp. 201–205.

Moschovakis, Y. N. (2001). “What Is an algorithm?” In:Mathematics Unlimited –
2001 and Beyond. Ed. by B. Engquist andW. Schmid. Berlin: Springer.

Németi, I. and G. Dávid (2006). “Relativistic computers and the Turing barrier”. In:

AppliedMathematics and Computation 178, pp. 118–142.

Nielsen, M. A. and I. L. Chuang (2010). Quantum Computation and Quantum
Information. 10th Anniversary. Cambridge: Cambridge University Press.

Oppenheim, P. andH. Putnam (1958). “Unity of science as a working hypothesis”.

In: Concepts, theories, and themind–body problem. Ed. byH. Feigl,M. Scriven

and G. Maxwell. Minnesota studies in the philosophy of science, Volume 2.

Minneapolis,MN: University ofMinnesota Press, pp. 3–36.

Papadimitriou, C. H. (1994). Computational Complexity. Reading,MA: Addison-

Wesley.

Piccinini, G. (2011). “The physical Church–Turing Thesis:Modest or Bold?” In: The
British Journal for the Philosophy of Science 62, pp. 733–769.

Putnam,H. (1975). “Philosophy and our mental life”. In:Mind, Language and Reality,
Philosophical Papers,Volume 2.Cambridge: Cambridge University Press, pp. 291–

303.

Rogers,H. (1967). Theory of Recursive Functions and Effective Computability. New
York, NY:McGraw-Hill.

Searle, J. R. (1980). “Minds, brains, and programs”. In: Behavioral and Brain Sciences
3, pp. 417–424.

— (1992). The Rediscovery of theMind. Cambridge,MA:MIT Press.

32

https://quantum.country/qcvc


Shagrir, O. (1998). “Multiple realization, computation and the taxonomy of psycho-

logical states”. In: Synthese 114, pp. 445–461.

— (2002). “Effective computation by humans andmachines”. In:Minds andMa-
chines 12, pp. 221–240.

— (2016). “Advertisement for the philosophy of the computational sciences”. In:

The Oxford Handbook of Philosophy of Science. Ed. by P. Humphreys. Oxford:

Oxford University Press, pp. 15–42.

— (2022). The Nature of Physical Computation. Oxford: Oxford University Press.

Shagrir, O. and I. Pitowsky (2003). “Physical hypercomputation and the Church-

Turing thesis”. In:Minds andMachines 13, pp. 87–101.

Shapiro, S. (2006). “Computability, proof, and open-texture”. In: Church’s Thesis
After 70 Years. Ed. by A. Olszewski, J.Woleński and R Janusz. Heusenstamm:

Ontos Verlag, pp. 420–455.

Shor, P.W. (1999). “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer”. In: SIAM Review 41, pp. 303–332.

Sieg,W. (2002). “Calculations byman andmachine: Conceptual analysis”. In: Reflec-
tions on the Foundations ofMathematics (Essays in Honor of Solomon Feferman).
Ed. by W. Sieg, R. Sommer and C. Talcott. Volume 15 of Lectures Notes in Lo-

gic, Association of Symbolic Logic. Cambridge: Cambridge University Press,

pp. 390–409.

Smith, P. (2013).An Introduction to Gödel’s Theorems. 2nd ed.Cambridge: Cambridge

University Press.

Soare, R. (1999). “The history and concept of computability”. In: Handbook of
Computability Theory. Ed. by E. R. Griffor. New York, NY: Elsevier, pp. 3–36.

Sprevak,M. (2007). “Chinese rooms and programportability”. In:The British Journal
for the Philosophy of Science 58, pp. 755–776.

Syropoulos, A. (2008).Hypercomputation: Computing Beyond the Church–Turing
Barrier. New York, NY: Springer.

Tanaka, G., T. Yamane, J. B. Héroux, R. Nakane, Kanazawa N., S. Takeda, H. Nu-

mata, D. Nakano and A. Hirose (2019). “Recent advances in physical reservoir

computing: A review”. In: Neural Networks 115, pp. 100–123.

Turing, A. M. (1936). “On computable numbers, with an application to the

Entscheidungsproblem”. In: Proceeding of the London Mathematical Society,
series 2 42, pp. 230–265.

33



Turing, A. M. (1939). “Systems of Logic Based on Ordinals”. In: Proceedings of the
London Mathematical Society, series 2 45, pp. 161–228.

— (1992). “Proposals for Development in theMathematics Division of an Auto-

matic Computing Engine (ACE). Report to the Executive Committee of the

National Physics Laboratory”. In: CollectedWorks of A. M. Turing:Mechanical
Intelligence. Ed. by D. C. Ince. Amsterdam: Elsevier, pp. 1–86.

— (2004/1954). “Solvable and unsolvable problems”. In: The Essential Turing. Ed. by
B. J. Copeland. Originally published in Science News, 31 (1954), 7–23. Oxford:

Oxford University Press, pp. 582–595.

Ulmann, B. (2013). Analog Computing. Munich: OldenbourgWissenschaftsverlag.

Wittgenstein, L. (1980/1947). Remarks on the Philosophy of Psychology, Volume 1.
Ed. by G. E. M. Anscombe,H. Nyman and G. H. vonWright. Oxford: Blackwell.

Wu, K., J. Garcıa de Abajo, C. Soci, P. Ping Shum and N. I. Zheludev (2014). “An

optical fiber network oracle for NP-complete problems”. In: Light: Science &
Applications 3, e147. doi: 10.1038/lsa.2014.28.

Yamakawa, T. and M. Zhandry (2022). “Verifiable quantum advantage without

structure”. arXiv:2204.02063v2. doi: 10.48550/arXiv.2204.02063.

Yao, A. C.-C. (2003). “Classical physics and the Church–Turing Thesis”. In: Journal
of the ACM 50, pp. 100–105.

34

https://doi.org/10.1038/lsa.2014.28
https://doi.org/10.48550/arXiv.2204.02063

	Introduction
	Distinguishing features of this argument
	No dependence on hypercomputation
	Computations should be individuated by their internal workings

	What is an effective method?
	Didn't Turing define `effective method'?
	All computational methods are effective methods
	Quantum computations that are not effective methods
	Simulating the quantum system by hand
	Conclusion
	Acknowledgements

