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CHAPTER 41 

Is the whole universe a computer? 
JACK COPELAND, MARK SPREVAK, and ORON SHAGRIR 

 

The theory that the whole universe is a computer is a bold and striking one. It is a 

theory of everything: the entire universe is to be understood, fundamentally, in terms of 

the universal computing machine that Alan Turing introduced in 1936. We distinguish 

between two versions of this grand-scale theory and explain what the universe would 

have to be like for one or both versions to be true. Spoiler: the question is in fact wide 

open – at the present stage of science, nobody knows whether it's true or false that the 

whole universe is a computer. But the issues are as fascinating as they are important, so 

it's certainly worthwhile discussing them. We begin right at the beginning: what exactly 

is a computer? 

 
What is a computer? 

To start with the obvious, your laptop is a computer. But there are also computers very 

different from your laptop – tiny embedded computers inside watches, and giant networked 

supercomputers like China’s Tianhe-2, for example. So what feature do all computers have in 

common? What is it that makes them all computers? 

Colossus was a computer, even though (as Chapter 14 explained) it did not make use of 

stored programs and could do very few of the things that your laptop can do (not even long 

multiplication). Turing's ACE (Chapters 21 and 22) was a computer, even though its design 

was dissimilar from that of your laptop – for example, the ACE had no central processing unit 

(CPU), and moreover it stored its data and programs in the form of 'pings' of supersonic 

sound travelling along tubes of liquid. Turing's artificial neural nets were also computers 

(Chapter 29), and so are the modern brain-mimicking 'connectionist' networks that Turing 

anticipated. In connectionist networks – as in your brain, but unlike your laptop – there is no 

separation between memory and processing, and the very same 'hardware' that does the 

processing (the neurons and their connections) functions also as the memory. Even Babbage's 

Analytical Engine (Chapter 24) was a computer, despite being built of mechanical rather than 

electrical parts. As Turing said:1 

'The fact that Babbage's Analytical Engine was to be entirely mechanical will help us to rid 

ourselves of a superstition. Importance is often attached to the fact that modern digital 

computers are electrical, and that the nervous system also is electrical. Since Babbage's 
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machine was not electrical … we see that this use of electricity cannot be of theoretical 

importance.' 

In fact, there is astonishing variety among the computers that are currently being 

researched or prototyped by computer scientists. There are massively parallel and distributed 

computers, asynchronous computers (i.e. computers with no central 'clock' coordinating the 

processing), nano computers, quantum computers, chemical computers, DNA computers, 

evolutionary computers, slime-mould computers, computers that use billiard balls, and 

computers that use swarms of animals or insects to solve problems…  The list goes on. There 

could in principle even be a universal computer consisting entirely of mirrors and beams of 

light.2 What, then, do all these different forms of computer have in common? Let's examine 

what Turing said of relevance to this question. 

Before the modern era, the word 'computer' referred to a human being. If someone spoke 

of a computer in the 19th century, or even in 1936, they would have been taken to be referring 

to a human computer – a clerk who performed the tedious job of routine numerical 

computation. There used to be many thousands of human computers employed in businesses, 

government departments, research establishments and elsewhere. In 1936, Turing introduced 

his 'logical computing machines' – Turing machines – so as to provide an idealized 

description of the human computer: in fact he began his account of the Turing machine: 'We 

may compare a man in the process of computing a ... number to a machine'.3 Cambridge 

philosopher Ludwig Wittgenstein, well known for his pithy and penetrating statements, put 

the point like this:4 

 'Turing's "Machines". These machines are humans who calculate.' 

Turing often emphasized the fundamental point that the Turing machine is a model (idealized 

in certain respects) of the human computer. For example:5 

'A man provided with paper, pencil, and rubber, and subject to strict discipline, is in effect a 

universal machine.' 

Even in his discussions of the ACE (Automatic Computing Engine) Turing continued to 

use the word 'computer' to mean 'human computer':6  

'Computers always spend just as long in writing numbers down and deciding what to do next 

as they do in actual multiplications, and it is just the same with ACE ... [T]he ACE will do the 

work of about 10,000 computers ... Computers will still be employed on small calculations.' 

So there were on the one hand computers – human beings – and on the other hand 

machines that could take over aspects of the computers' work. The term 'computing machine' 

was used increasingly from the 1920s to refer to small calculating machines that mechanized 

elements of the human computer's work. When the phrase 'electronic computer' came along 
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in the 1940s, it also referred to a machine that mechanized the work of the human computer. 

Turing made this explicit:7 

'The idea behind digital computers may be explained by saying that these machines are 

intended to carry out any operations which could be done by a human computer'. 

Turing considered this characterization of the concept digital computer to be so important 

that he began his Programmers' Handbook for Manchester Electronic Computer Mark II with 

the following statement:8 

'Electronic computers are intended to carry out any definite rule of thumb process which 

could have been done by a human operator working in a disciplined but unintelligent manner.' 

 Here, then, is the Turing-style answer to the question: 'What is a computer, in the 

modern sense?'.9 Any physical mechanism that carries out the same work as the idealized 

human computer is itself a computer. (The human computer is idealized in that no limit is 

placed on the amount of time available to the human computer, nor on the quantity of paper 

and pencils available – idealized human computers live indefinitely long, and never get 

bored.) The computer carries out tasks that can, in principle, be done by a human rote-worker 

following an algorithm (and no other tasks) – tasks that, as Turing put it10, can be done 

'by human clerical labour, working to fixed rules, and without understanding.' 

 With this clarification in place we turn next to the important distinction between 

conventional and unconventional computers. Modern laptops, tablets, minis and mainframes 

are conventional computers, while slime-mould computers and swarm computers are not. 

Conventional computers derive ultimately from the design set out in the famous 1945 

proposal 'First Draft of a Report on the EDVAC' (Chapter 20) and they consist fundamentally 

of two parts, the CPU and the memory. A conventional computer's basic cycle of activity is 

the 'fetch-operate-store' cycle: operands (numbers) are fetched from memory, operated on in 

the CPU (e.g. multiplied together), and the result of the operation (another number) is routed 

back to the memory and stored. Any computer that does not fit this description is 

unconventional. 

Is the universe a conventional computer, a cosmic version of your laptop or of 

Tianhe-2? This seems to us logically possible but not terribly likely. Where is the cosmic 

computer's CPU? Where is the cosmic computer's memory? Where are the registers holding 

the operands, and the registers in which the results of the CPU's operations are stored? 

There's no evidence of the universe containing any of these core elements of the conventional 

computer. 

However, the Californian philosopher John Searle argues that even your garden wall 

is a conventional computer; and other philosophers maintain that a simple rock standing 
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motionless on a beach is a (conventional) computer – and so, if Searle et al. are right, the 

entire universe is by the same token a gigantic conventional computer.11 These claims about 

walls and rocks, even if ultimately absurd, deserve a detailed discussion, but since we are 

after more important quarry we shall not pause to give this discussion here: interested readers 

will find a critique of these claims in the references given in the endnote.12 Turning away 

from the idea that the universe is a conventional computer, we are going to discuss the more 

promising hypothesis that the universe is a computer of a type first introduced by John von 

Neumann and mentioned by Stephen Wolfram in Chapter 5: a cellular automaton.13 

 

Zuse's thesis 

Konrad Zuse, who appears briefly in Chapters 6 and 31, built his first computers before the 

War – in the living room of his parents' Berlin apartment.14 As an engineering student at the 

Technical University in Berlin-Charlottenburg, Zuse had become painfully aware that 

engineers must perform what he called 'big and awful calculations'.15 'That is really not right 

for a man', he said:16 

'It's beneath a man. That should be accomplished with machines.' 

After the War Zuse supplied Europe with cheap relay-based computers, and later 

transistorized computers, from his factory in Bad Hersfeld. Even though he had anticipated 

elements of the stored-program concept, in a 1936 patent application, it was not until the 

1960s that he began to include stored programming in his computers.17 (It is sometimes said 

in the historical literature that Zuse's 1941 Z3 computer was a stored-program machine but 

this is an error.) Whether Zuse and Turing ever met in person is uncertain. Interestingly Zuse 

stated that he had no knowledge of Turing's 1936 article 'On Computable Numbers' until 

1948, the year that he was summoned from Germany to London to be interrogated by British 

computing experts.18 Donald Davies, Turing's assistant at the NPL, was one of the 

interviewers: Zuse eventually 'got pretty cross', Davies recollected, and things 'degenerated 

into a glowering match'.19 Zuse seemed 'quite convinced' (Davies continued) that he could 

make a smallish relay machine 'which would be the equal of any of the electronic calculators 

we were developing'. 

Fig. 41.1 Konrad Zuse, 1910-1995. 

Zuse's 1967 book Rechnender Raum ('Space Computes') sketched a new – even 

mind-bending – framework for fundamental physics. Zuse’s thesis is that the universe is a 

giant digital computer, a cellular automaton (CA).20 According to Zuse the universe is, at 

bottom, nothing more than a collection of 1s and 0s changing state according to 
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computational rules. Everything that is familiar in physics – force, energy, entropy, mass, 

particles – emerges from that cosmic computation. 

Stephen Wolfram explains that cellular automata are lattice-like grids, all of whose 

properties are discrete: they are21 

'systems in which space and time are discrete, and physical quantities take on a finite set of 

discrete values. … A cellular automaton evolves in discrete time steps.' 

A CA is very different from a conventional computer. To visualize a CA, picture a two-

dimensional grid made up from square cells. As the CA's time ticks forward in discrete steps, 

each cell in the grid is at any moment in one or other of two states, ‘on’ or ‘off’. The CA's 

‘transition rules’ describe how the cells' states at one time-step determine their states at the 

next time-step. At the start of the process, some of the grid's cells are 'on' and others are 'off'; 

and as time ticks forwards, cells turn on or off according to the transition rules. At some point 

the grid may reach what is called a ‘halting’ state: the computation is completed and the 

output can be read off from the remaining pattern of activity on the grid. 

Just as your laptop can solve computational problems (such as calculating how many 

tiles of a certain size and shape you will need to tile your bathroom floor, or solving some 

humungous mathematical equation), CAs can also solve such problems. The problem is 

encoded in the grid's initial pattern of activity, and once the grid reaches its ‘halting’ state, the 

user reads off the solution from the residual pattern of activity. Different CAs can have 

different transition rules; and some may have different kinds of grid, or more than just two 

possible cell-states. Even though CAs are remarkably different from conventional computers, 

it nevertheless turns out that if a problem can be solved by a conventional computer then it 

can also be solved by a CA (and vice versa): different computational architecture, but same 

computational power. 

In 1970 the British mathematician John Conway invented a CA engagingly called the 

‘Game of Life’. This CA has four very simple transition rules (see box). Conway noted an 

interesting fact about the Game of Life: through applying these simple rules to small-scale 

patterns on the grid, large-scale patterns of surprising complexity emerge. 
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Format as a box 

The Game of Life has just four transition rules: 

1. If a cell is on, and fewer than 2 of its neighbours are also on, it will turn off at the 
next time-step. 

2. If a cell is on, and either 2 or 3 of its neighbours are also on, it will stay on at the next 
time-step. 

3. If a cell is on and more than 3 of its neighbours are on, it will turn off at the next 
time-step. 

4. If a cell is off and exactly 3 of its neighbours are on, it will turn on at the next time 
step. 

 

If you were to zoom in and watch individual cells during the course of the Game of 

Life's computation, all you would see would be the cells switching on and off in accord with 

the four rules. Zoom out, though, and something else appears. Large structures, composed of 

many cells, are seen to grow and disintegrate over time. Some of these structures have 

recognisable characters: they maintain cohesion, move, reproduce, and interact with one 

another. Their behaviour can be dizzyingly complex. Patterns called ‘oscillators’ change 

shape, returning to the same shape that they began with after a certain number of time steps. 

A three-cell winking ‘blinker’ flips repeatedly from a vertical line to a horizontal line and 

back again, while the twelve-cell ‘pentadecathlon’ undergoes a beautiful fifteen step 

transformation that returns it to its original shape. 

So-called ‘spaceships’ glide across the grid in the Game of Life: as time clicks 

forward, they morph into a new configuration that duplicates their original pattern but is 

displaced by one or more cells from their starting position, so creating movement. If you 

watch the game speeded up, spaceships appear to move smoothly. Spaceships are the main 

way in which information is transferred from one part of the grid to another. ‘Gliders’ are the 

smallest spaceship: they consist of five cells and will, over four time-steps, reproduce their 

original configuration but displaced one cell to the left and down. There are larger spaceships: 

in fact there is no known largest spaceship. The largest one discovered so far is an eleven-

million cell monster, the ‘Caterpillar’. Large-scale structures like the caterpillar are governed 

by their own rules, and to discover these ‘higher-order’ rules it is often better to experiment 

than to calculate. Observing the behaviour of the large structures under various conditions 

reveals the large-scale rules. 

Some large-scale patterns, consisting of hundreds of thousands of cells, even behave 

as a universal Turing machine. Still larger patterns act like construction machines that 

assemble this universal Turing machine, and yet larger patterns – virtual creatures, perhaps? – 
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feed instructions to the universal machine. The virtual creatures inside the Game of Life can 

program their universal Turing machines to perform any computation – and that includes 

running their own simulation of the Game of Life. A simulation of the Game of Life on their 

machines – a game within the game – might contain other virtual creatures, and these may 

simulate the Game of Life on their Turing machines, which may in turn contain more virtual 

creatures, and so on. The nested levels of complexity that can emerge on a large grid are 

mind-blowing.22 Nevertheless, everything that happens in the Game of Life is in a 

fundamental sense simple: the behaviour of every pattern, large and small, evolves as 

prescribed by the four simple transition rules. Nothing ever happens in the Game of Life that 

is not determined by these rules. 

Zuse’s thesis is that our universe is a CA governed by a small number of simple 

transition rules: he suggested that with the right rules a CA can generate patterns called 

'digital particles' (Digital-Teilchen).23 These digital particles correspond to the fundamental 

physical particles that conventional physicists regard as the basic building blocks of the 

universe. Zuse was writing before the Game of Life was invented, and so he wasn't 

suggesting that the specific transition rules in the Game of Life are the fundamental rules of 

our universe, but if he's right then some simple transition rules (and their associated grid 

structure) comprise the fundamental physics of the universe. More recently the Dutch Nobel 

Laureate and theoretical physicist Gerard ’t Hooft (pronounced 'toft') has said:24 

'I think Conway’s Game of Life is the perfect example of a toy universe. I like to think that the 

universe we are in is something like this.' 

If Zuse’s thesis is right, then our universe is at its most fundamental level a computer: 

everything we observe in the universe – particles, matter, energy, fields – is a large-scale 

pattern that emerges from the activity of a CA. This CA’s grid is not made up from traditional 

matter like electrons or protons: the CA operates at a more fundamental level, and electrons, 

protons, and all matter currently known to physics, emerge from the CA’s activity – although 

what the CA's grid is in fact made of is far from clear, as we shall see below. This CA 

operates everywhere in the universe, at the smallest scale; and to describe it would be to 

produce a grand unifying theory of everything in the universe. All our other theories in 

physics – including general relativity and quantum mechanics – should fall out of this grand 

unifying theory. If Zuse is right then we humans are not so different from the virtual creatures 

that we can create in the Game of Life. In fact, ’t Hooft suggests that our three-dimensional 

universe may be a sort hologram, arising from the transformation of digital information on a 

two-dimensional surface.25 

 



8 

 

Examining Zuse's thesis 

Is Zuse’s thesis right? The idea that the universe is a giant CA faces three big challenges. The 

first is the 'emergence problem': can it be demonstrated that the physics of our universe could 

in principle emerge out of a digital computation? The second challenge is the 'evidence 

problem': is there any experimental evidence to support Zuse’s thesis? Third is the 

'implementation problem': what 'hardware' is supposed to implement the universe’s 

computation? Let’s take the three challenges in turn. 

The emergence problem is extremely hard. To solve it, the proponent of Zuse's thesis 

would need to find a way of showing how current physical theories could emerge from some 

simple underlying digital computation. Four large hurdles stand in the way. First, existing 

physics involves continuous quantities (position, energy, velocity, etc.); whereas CAs, and all 

digital computers, deal only in discrete units, not in continuous quantities. How could what is 

fundamentally continuous emerge from what is fundamentally discrete? To give a simple 

illustration: time is traditionally regarded as being continuous, whereas the movements of a 

digital watch are discrete: how could what is smooth and continuous arise from what is jerky 

and discontinuous? Second, physics seems to involve non-deterministic (i.e. random) 

processes, whereas CAs behave in a completely deterministic way. Third, current physics 

allows for non-local connections between particles: relationships without an intervening 

messenger (this is known as ‘quantum entanglement’). Yet CAs don't allow such connections 

between distant cells of the grid. Fourth, and more worryingly still, our two best physical 

theories – general relativity and quantum mechanics – appear to be incompatible. How to 

unify general relativity and quantum mechanics is the hardest problem in current physics. But 

this is exactly what would need to be done by an underlying computational theory – no easy 

task! Perhaps each of these problems can be solved; if so, it is up to the advocates of Zuse's 

thesis to find the solutions. 

Second, the evidence problem. To date, there is no experimental evidence at all for 

Zuse’s thesis – so why believe it? It's also true that there's no experimental evidence against 

the thesis, and in fact evidence either way would be hard to find. This is because the CA that 

supposedly underlies the universe exists at extremely small spatial scales, of around one 

'Planck length'. A Planck length, named after the famous quantum physicist Max Planck, is 

defined as 10-35 meters – that's just one zero short of a million million million million million 

millionth of a meter. Exploring events at this scale poses formidable obstacles. Let’s use the 

size of the sub-atomic particle called the proton as our measuring stick. The Large Hadron 

Collider at CERN near Geneva can probe events that are one hundred thousand times smaller 

than a proton – the size difference between a mosquito and Mount Everest. However, a 
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Planck length is much, much smaller still: a Planck length is ten followed by nineteen zeroes 

times smaller than a proton – the same as the size difference between a mosquito and the 

Milky Way. Conventional particle colliders are never likely to be able to explore events at the 

Planck scale. In 2014, Craig Hogan’s team at FermiLab in Chicago started a different kind of 

experiment to test whether space is a digital grid at the Planck scale. If it were, this would be 

one small step toward verifying Zuse’s thesis. The experiment aims to detect jitter at the 

Planck scale, by measuring small movements in two laser interferometers.26 So far, the 

experiment has not produced evidence for or against space being digital, and moreover there 

are serious doubts over whether the experiment will ever produce evidence one way or the 

other.27 Collecting any evidence at the scale that is relevant to Zuse's thesis is hard. 

Turning next to the implementation problem, the challenge here is to say what 

hardware could possibly implement the universe’s computation. The computations that your 

laptop carries out are implemented by electrical activity in silicon chips and metal wires; the 

computations in your brain are implemented by electro-chemical activity in your neurons and 

synapses; and Conway’s original version of the Game of Life was implemented by means of 

plastic counters and a Go board. Every computation requires some implementing medium, 

and the implementing hardware must exist in its own right. It cannot be something that itself 

emerges from the computation as a high-level pattern: Conway’s plastic counters cannot 

emerge from the Game of Life – they are required in order to play the Game of Life in the 

first place. 

According to Zuse's thesis, all matter, all energy, all fields, all particles emerge as 

patterns from the underlying cellular computation. What, though, could implement the 

cellular computation? Not something that we already know of in physics, since by hypothesis 

everything that we currently know of is an emergent pattern produced by the computation. 

Nor even something physical that we don't presently know of, since everything physical is 

supposed to emerge from the underlying computation. The implementing hardware must be 

something else: something beyond the realm of physics. 

Some outlandish proposals have been made regarding this hardware. For example, 

the cosmologist Max Tegmark’s 'Mathematical Universe Hypothesis' claims that the 

implementing hardware of the physical universe consists of abstract mathematical objects 

(existing in what mathematicians sometimes call 'Platonic heaven').28 Tegmark’s proposal 

inverts the usual way we think of computation: rather than physical objects – such as your 

electronic PC – implementing abstract mathematical objects – such as Turing machines or 

natural numbers – abstract objects implement all physical objects. On Tegmark's proposal, 

abstract mathematical objects are more fundamental to the universe than atoms and electrons! 



10 

 

Many objections can be raised to this proposal.29 The most relevant here is that 

abstract mathematical entities don’t seem to be the right kinds of things to implement 

computation. Time and change are essential to implementing a computation: computation is a 

process that unfolds through time, during which the hardware undergoes a series of changes 

(flip-flops flip, for example, neurons fire and go quiet, plastic counters appear and disappear 

on a Go board, and so on). Yet Tegmark’s mathematical objects exist timelessly and 

unchangingly. What plays the role of time and change for this 'hardware'? How could these 

Platonic objects change over time in order to implement distinct computational steps? And 

how could one step give rise to the next if there is no time or change? Unchanging 

mathematical objects are just not the right kinds of things to implement a computation. 

Currently, there are no plausible solutions to this chicken-and-egg implementation 

problem. Perhaps supporters of Zuse’s thesis could say: we know that something must 

implement the universe’s computation, but we should admit that we know nothing – and can 

know nothing — about this shadowy substratum. The proper aim of physics (Zuse's supporter 

continues) is simply to describe the universe's computation; physics must remain silent about 

the implementing medium. As Wittgenstein said in his usual pithy way:30 

'Whereof one cannot speak, thereof one must be silent.' 

If, however, you think that there is something unsatisfying about restricting the scope of 

physics in this way, then you are not alone. Red-blooded physicists want to know everything 

about the universe, and will not take well to this idea that the universe contains a fundamental 

substratum that must always remain beyond the reach of physics. 

So far we have found no reason at all to think that the universe is a computer. In the 

Introduction, we mentioned a second version of the computer-universe theory and we now 

turn to this. More modest than the first version of the theory, this acknowledges that the 

universe may not literally be a computer, but maintains that nevertheless the physical 

universe is fundamentally computational, in a sense that we shall now explain. 

 

Is the universe computable? 

A computable system is a system whose behaviour could be computed by an idealized human 

computer. It's important to add the caveat 'idealized', since it might take a human clerk a 

million years to compute the behaviour of some large and complex system – and moreover, 

the calculations might require more paper and pencils than planet Earth is able to supply. 

There are many systems that, although they are not computers themselves, are 

nevertheless computable. Consider, for example, an old-fashioned navigation lamp. The 
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function of the lamp is to flash out a signal marking, say, the eastern end of a particular 

sandbank in the Thames estuary (and to assist navigators the signal must be recognizably 

different from the signals emitted by all the other navigation lamps up and down that stretch 

of water). This lamp's signal is as follows: the lamp turns on for a second, then switches off 

for two seconds, then on for two seconds, then off for four seconds, and then repeats this 

cycle indefinitely. (The ons and offs are created by a sliding metal disk that is controlled 

mechanically: while the disc is positioned over the lamp's glass aperture the light is 

effectively turned off, and when the disc ceases to obscure the aperture, the light shines out – 

although the mechanical details do not matter for the example.) It is easy for a human 

computer to calculate the on-off behaviour of this lamp, and if you were asked whether the 

lamp would be on or off seventy-seven seconds (say) after its first flash, you would probably 

have little difficulty computing the answer. In summary: the lamp is not a computer but its 

flashing behaviour is computable. 

More complicated behaviours are also computable. For example, let's bring the 

irrational number π into the formula that determines whether the lamp is on or off. π, the ratio 

of a circle's circumference to its diameter, is 3.141592653589…  There is no last digit: the 

digits of π continue on to infinity. Using π we can make the lamp's switching behaviour quite 

complex: if the 1st digit of π is odd then the lamp begins its sequence of operations by 

illuminating for a second, and if the 1st digit is even the lamp remains unilluminated during 

the first second; and if the 2nd digit of π is odd, the lamp illuminates for a second, and if the 

2nd digit is even the lamp is unilluminated during this second second of its operating time; and 

so on. In this case, the lamp's behaviour during its first thirteen seconds of operating is: flash, 

flash, no flash, flash, flash, flash, no flash, no flash, flash, flash, flash, no flash, flash. As the 

sequence grows longer, an observer might think that the flashes and pauses are coming 

randomly. But this isn't so: there is nothing random about π. 

Is the behaviour of the lamp still computable? Yes, it is. Turing showed that π is what 

he called a 'computable number': a Turing machine – and therefore a human computer – can 

calculate the digits of π, one by one. (Since there is no last digit of π, the Turing machine will 

work on forever, unless we stop it after it has produced some finite number of the digits.) So 

the Turing machine (or human computer) can calculate when the lamp is going to flash and 

when there will be no flash. 

Randomness is one form of uncomputability: if the lamp were flashing randomly, its 

behaviour would not be computable, because if the human clerk could always predict the 

behaviour at the next second, then the behaviour would not be random.31 Is there any 

conceivable way of arranging the behaviour of the lamp so that (a) its behaviour is not 
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random (i.e. is deterministic) and (b) its behaviour is nevertheless not computable? Answer: 

yes. This in fact follows from points explained in Chapters 7 and 37. As mentioned there, 

Turing proved that no Turing machine can solve the 'printing problem': that is to say, there is 

no way of programming a Turing machine so that it can decide, given any Turing-machine 

program, whether that program is ever going to print '1' or not (or '#', as in the example in 

Chapter 7: the choice of symbol makes no difference). Using this fact, we will explain how to 

arrange the flashes so that the sequence is not computable. 

Let's assume, first, that all the infinitely many Turing machines are ordered in some 

way, so that we can speak of the 1st Turing machine, the 2nd Turing machine, and so on. The 

precise details of how the ordering is done need not concern us; one method would be to 

deem that the Turing machine with the shortest program is the 1st machine, and that the one 

with the next shortest program is the 2nd machine, and so on – although, of course, some 

'tiebreaker' principles would be required for ordering machines whose programs are of the 

same length; and some further details would also be required to deal with the issue of how 

much data ('input') a machine has on its tape before it starts work. We are going to modify the 

above switching recipe (the one involving π) like this: if the 1st Turing machine is one of 

those that at some point prints a '1', then the lamp starts its sequence of operations by 

illuminating for a second, and if the 1st Turing machine never prints '1', then the lamp remains 

unilluminated during the first second; and if the 2nd Turing machine is one of those that at 

some point prints a '1', the lamp illuminates for a second, and if the 2nd Turing machine never 

prints '1', the lamp is unilluminated during the second second of its operating time; and so on. 

Now the resulting sequence of flashes and pauses is not computable. 

This flashing light example helps to clarify what is being asked by the question 'Is the 

whole universe computable?': the question asks whether the behaviour of everything in the 

universe can be computed by an idealized human computer (equivalently, by a Turing 

machine), or whether the universe contain systems that, like the third lamp, are 

uncomputable. In the next three sections we examine a number of theses that are relevant to 

this question, starting with a famous – but sometimes misunderstood – thesis put forward by 

Turing. 

 

Turing's thesis 

In 1936 Turing stated (and argued for) what has come to be called simply 'Turing's thesis': a 

Turing machine can do any task that the human computer can do.32 Essentially the thesis says 

that the Turing machine is a correct formal model of the human computer. 
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It is worth mentioning in passing that sometimes Turing's thesis is called the Church-

Turing thesis (or even just Church's thesis). This is because Alonzo Church devised another 

formal model of the human computer, also in 1936, which Turing quickly proved to be 

equivalent to his own model.33 Church's model was couched in terms of his highly technical 

concept of 'λ-definability' (the Greek letter 'λ' is pronounced 'lambda'). Something is said to 

be λ-definable if it can be produced by a certain process of repeated substitutions – the details 

need not concern us. Chapter 7 mentioned that Kurt Gödel much preferred Turing's model to 

Church's: Gödel said that he found Turing's model 'most satisfactory' but told Church that his 

approach was 'thoroughly unsatisfactory'.34 

Nevertheless Church's own thesis, that his λ-definability model is a model of the 

human computer, is true – since Turing managed to prove that everything Turing machines 

can do is λ-definable (and vice versa). Nowadays there is a tendency to say that Turing's 

thesis and this thesis of Church's are 'the same' (in virtue of Turing's proof), but this is 

misleading, because the two theses have different meanings. One obvious and important 

difference between them is that Turing's thesis involves computing machines but Church's 

does not. In what follows we focus on Turing's thesis, not Church's. 

Turing's thesis gets confused with some quite different claims about computability, 

and the implications of his thesis are not infrequently misunderstood. Searle, for example, 

gives this formulation of the thesis:35 

'anything that can be given a precise enough characterization as a set of steps can be 

simulated on a digital computer.' 

This statement of Searle's implies that any system that operates step by step is computable, 

but that is a much stronger claim than Turing's actual thesis, which says merely that human 

computers can be simulated by Turing machines. In fact Searle's thesis can readily be 

counter-exampled.36 

Another example of confusion is Sam Guttenplan's statement (in the Blackwell 

Companion to the Philosophy of Mind) that for any systems whose 'relations between input 

and output are functionally well-behaved enough to be describable by ... mathematical 

relationships': 37 

'we know that some specific version of a Turing machine will be able to mimic them.' 

Again this is very different from what Turing said: Turing's own thesis does not imply that a 

Turing machine can simulate (mimic) any input-output system that can be described by 

mathematics – only that it can simulate any human computer. In fact, since the universe is 

effectively an input-output system (one thing leads to another by physical causation), and 
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since the universe certainly appears to be mathematically describable, Guttenplan's thesis 

appears to imply that indeed the physical universe is computable. But no such thing is 

implied by Turing's thesis. 

A third and final example of this tendency to misunderstand Turing and his work is 

provided by philosophers Paul and Patricia Churchland, who say that Turing's38 

'results entail something remarkable, namely that a standard digital computer, given only the 

right program, a large enough memory and sufficient time, can compute any rule-governed 

input-output function. That is, it can display any systematic pattern of responses to the 

environment whatsoever.' 

Turing's results certainly do not entail that every rule-governed input-output system is 

computable. That, as we have just seen, is tantamount to claiming that a rule-governed 

universe is a computable universe; and the uncomputable lamp example – where the rule that 

determines whether or not a flash comes at the nth second involves whether or not the nth 

Turing machine ever prints '1' – shows that this is wrong. 

 There is a thesis very different from Turing's lurking amid these confusions, and the 

fact that it isn't the same as Turing's thesis doesn't necessarily mean that it isn't true. So let's 

try to pin this thesis down and examine it. First attempt: the behaviour of any imaginable law-

governed deterministic physical system is computable. Notice that if it's assumed that the 

universe contains only physical systems (and if it is also assumed that the universe is law-

governed and deterministic) then this thesis certainly implies that the whole universe is 

computable. But because we don't want to get diverted by a discussion of the thorny question 

of whether everything in the universe is physical – or whether, on the other hand, it contains 

non-physical things such as souls and angels – we will henceforward concentrate on the claim 

that the whole physical universe is computable. 

This thesis relating lawfulness and computability is, however, no more acceptable 

than the previously discussed thesis that all rule-governed systems are computable. The third 

lamp is a deterministic physical system that is governed by the laws of physics, yet is not a 

computable system. Another counter-example to the thesis is the hypothetical discovery, in 

some distant galaxy, of a naturally occurring and fully deterministic source of radio waves – 

perhaps an oscillating supernova remnant – that emits an unending sequence of radio-

frequency pulses exhibiting the same pattern as the flashes emitted by the third lamp. The 

supernova remnant is a law-governed physical system whose behaviour is not computable. 

The underlying point is that there are imaginable physical laws that are deterministic but 

uncomputable, and so the thesis fails.39 



15 

 

The third lamp, though, was only very loosely specified: we did not actually explain 

how the flashing behaviour is brought about in such a way that it reflects the printing 

behaviour of the Turing machines. The same goes for the hypothetical supernova remnant. 

This leads on to a better statement of the thesis: the behaviour of any rigorously specified 

deterministic physical system is computable. We call this the Specification Thesis, or S-thesis 

for short. 

The physical universe, we assume, can be rigorously specified mathematically – we 

don't know this specification yet, but this is what physics aims at. So the S-thesis seemingly 

entails that the physical universe, if deterministic, is computable. But is the S-thesis true? In 

fact it seems not to be. In the next section we will describe a rigorously specified 

deterministic machine – actually a kind of Turing machine – whose behaviour is not 

computable. 

 

Accelerating Turing machines 

As the name implies, accelerating Turing machines (ATMs) speed up as they compute; but 

apart from the fact that their speed of operation accelerates as the computation proceeds, 

ATMs are exactly like standard Turing machines.40 

An ATM accelerates in accordance with a formula first introduced by the philosopher 

Bertrand Russell in a 1914 lecture. He described an unusual way of running around a 

racetrack:41 

'If half the course takes half a minute, and the next quarter takes a quarter of a minute, and 

so on, the whole course will take a minute.' 

Russell emphasized that although this is 'medically impossible', it is not logically impossible. 

An ATM follows the same pattern: it performs the second operation specified by its 

program in half the time taken to perform the first, and the third in half the time taken to 

perform the second, etc. If the time taken to perform the first operation is one second (say), 

then the next operation is done in half a second, the third operation is done in a quarter of a 

second, and so on. Adding up the times taken by the second and third operations and 

onwards, we get: 

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ...  

This total evidently cannot exceed one second (since what is added at each step is always less 

than the remaining amount that must be added in order to reach 1). So, allowing also for the 

second that it takes to do the first operation, the total time required for all the operations done 



16 

 

by the machine is no more than two seconds. Notice that this remains true even if the machine 

carries out an infinite number of operations – i.e., never stops computing. Which is to say: an 

ATM can carry out an infinite number of computations in no more than two seconds. 

An ATM can exhibit behaviour that is not computable. For example, let's suppose 

that, for any selected integer n, we want to find out whether the nth Turing machine ever 

prints '#'. If the nth Turing machine is one of those that runs on forever, then you couldn't find 

this out simply by watching the machine at work, since no matter how long you had been 

watching without '#' appearing, you could never be sure that '#' would not be printed at some 

future time – and so you would never be in a position to say: 'The nth Turing machine does 

not print "#"'. This is not a computable task, as Turing proved in 1936; but nevertheless an 

ATM can do it. Here's how. The ATM calculates the behaviour of the nth Turing machine, 

step by step, and if it finds that the nth machine does print '#', then it outputs the message: 

'Yes, it prints "#"' (or, better, we can arrange for it to output an abbreviated form of this 

message). If, on the other hand, the nth machine runs on forever without printing a single '#', 

then the ATM will itself run on through infinitely many calculations as it simulates the nth 

machine, waiting in vain for it to print '#'. But since these infinitely many calculations will 

take the ATM no more than two seconds to complete, we know that if the message 'Yes, it 

prints "#"' has not arrived after two seconds, then the nth machine does not print '#'. 

It only remains to fill in the details. We prepare the ATM by writing the program of 

the nth machine on its tape: the ATM will simulate the nth machine by following this program. 

In order to make the message 'Yes, it prints "#"' as compact as possible, we adopt the 

convention that if the ATM writes '1' on the very first square of its tape (which we make sure 

we leave blank in the setting-up procedure), then this shall be taken to mean 'Yes, it prints 

"#"'. We accordingly program the ATM to go to this square and print '1' on it (and then halt) 

if it discovers that the nth machine prints '#'; and the ATM is prohibited from printing 

anything on this square in any other circumstances. 

Now we press the ATM's start button and wait two seconds before reading the 

output. If we see that the special square contains '1', then the nth machine does print '#'; and if 

we see that the special square is still blank, then the nth machine does not print '#'. 

So the S-thesis appears to be false. The ATM has been specified carefully and yet its 

behaviour is not computable. Those interested in exploring ATMs further will find a 

reference in the endnote.42 

However, the fact that the ATM is a logical possibility doesn't mean that it could 

actually exist in our physical universe. The ATM pushes us towards a sharper version of the 
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thesis that we are looking for; we call this sharper version the 'physical computability thesis' 

(PCT). 

 

The physical computability thesis 

The PCT states that the behaviour of every genuinely possible deterministic physical system 

(that is, every deterministic physical system that is possible according to the physics of our 

universe) is computable. 

 It is worth noting in passing that the PCT is often referred to as the 'physical version' 

of Turing's thesis, and is sometimes named the 'Physical Church-Turing Thesis'. However, 

the name 'Physical Church-Turing Thesis' is perhaps not ideal, because the PCT has little or 

nothing to do with the Church-Turing thesis, and neither Church nor Turing endorsed – nor 

even formulated – the PCT. Since using the name 'Physical Church-Turing Thesis' could open 

the door to confusions, we prefer to avoid it here. 

 The PCT is an interesting thesis, and entails an affirmative answer to our question 'Is 

the whole physical universe computable?' (assuming that the universe is deterministic). But is 

the PCT true? Some maintain not. In the remainder of this section we will describe a potential 

counterexample to the PCT involving a relativistic system (in the sense of Einstein's theory of 

relativity). 

The idea of using relativity in order to formulate an uncomputable system was 

presented by Itamar Pitowsky in 1986, at an academic conference in Jerusalem: Pitowsky 

explained that under certain special conditions, a computer can perform infinitely many steps 

in what an observer who is outside the system (but communicating with it) experiences as a 

finite time.43 What's more, this computer can be a perfectly ordinary laptop that functions just 

as usual – and as far as the laptop is concerned, there is no speed-up at all: it performs each 

step of the computation at the same rate. The speed-up that enables infinitely many steps to 

be performed in a finite time is seen only from the viewpoint of the distant observer. 

This is not quite the same idea as an ATM, since the ATM described earlier would be 

seen as speeding up even by an observer who is part of the system (sitting on the scanner, 

say). Additionally, relativistic systems are governed by Einstein's theory of relativity, 

meaning that no signal can travel faster than light travels in a vacuum; whereas an ATM is 

not necessarily subject to this restriction. An ATM may accelerate to the point where the 

scanner is moving along the tape faster than the speed of light (although the scanner could be 

kept below light speed if the symbols on the tape were to get progressively smaller, with the 

result that the distances travelled by the scanner become shorter and shorter). 
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Pitowsky's original setup conformed to Einstein's special theory of relativity, but here 

we will describe a setup proposed by István Németi and his group (at the Hungarian 

Academy of Sciences in Budapest) that involves Einstein's general theory of relativity.44 

Németi's system is in effect a relativistic implementation of an ATM. He emphasizes that his 

system is a physical one, as opposed to some purely notional system that could exist only in 

fairy-land: the system is physical, Németi says, in the sense that it is 'not in conflict with 

presently accepted scientific principles', and, in particular, 'the principles of quantum 

mechanics are not violated'.45 Németi suggests that humans might 'even build' his relativistic 

system 'sometime in the future'.46 

Németi's system consists of two parts, one part being a standard Turing machine, S, 

located on Earth, and the other part being an observer, O, who journeys through space. Before 

beginning his or her journey, O sets up S to simulate the nth Turing machine, the object of the 

exercise being to discover whether or not the nth machine prints '#'. Associated with S is a 

piece of ancillary equipment that emits a signal if (and only if) the simulation done by S 

reveals that the nth machine prints '#'. This arrangement is equivalent to the previous one of 

writing '1' on the first square of S's tape if (and only if) the nth machine prints '#'. 

O then travels through space to a type of black hole known as a 'slow Kerr hole', after 

New Zealand mathematician Roy Kerr. Slow Kerr holes are huge, slowly rotating black 

holes. Cosmologists do not know for certain if any slow Kerr holes actually exist, but Németi 

points to 'mounting astronomical evidence for their existence'. He chooses a slow Kerr hole 

because these have special properties, one of which is that the observer O can, Németi says, 

pass through the hole 'and happily live on'. If O were to enter a more traditional type of black 

hole, he or she would be annihilated by the crushing gravitational forces generated by the 

black hole. In the case of a slow Kerr hole, however, these extreme gravitational forces are, 

Németi explains, counterbalanced by the Kerr hole's rotational forces – the gravitational 

forces are offset by the forces that result as the black hole spins, meaning that the observer is 

not crushed, and can in principle emerge safely to tell the tale. 

Németi theorizes that as O starts to enter the Kerr hole, S's rate of computation 

accelerates relative to O. This is due to 'gravitational time dilation', an effect predicted by 

Einstein's theory of relativity. The deeper into the hole O travels, the faster and faster S runs 

relative to O, in fact without any upper limit. The acceleration continues until, relative to a 

time t on O's watch, the entire span of S's computing is over; and, if any signal was emitted 

by S's signal-generator, it will have been received by O before this time t. From O's point of 

view, S has done its computation in a finite period of time. This is so even if S runs on 

through infinitely many calculations as it simulates the nth machine, in the possible case 
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where the nth machine computes forever without printing '#'. By time t, therefore, O knows 

whether or not a signal has been emitted, and so knows whether or not the nth machine ever 

prints '#'. 

If Németi is right then this is a counterexample to PCT: a deterministic physical 

system that is not computable but that nevertheless is possible according to the physical laws 

of our universe. His counterexample is certainly not universally accepted: for example, one 

can question whether the existence of a Turing machine that is able to compute forever 

without wearing out – as S must, if the nth machine runs on forever without printing '#' – is 

really consistent with the actual laws of physics. But Németi's example certainly serves to 

show that it's far from obvious that the PCT is true. As we intimated in our introduction, the 

answer to 'Is the whole physical universe computable?' is currently unknown. Even if there is 

genuine randomness – and hence uncomputability – in the universe, the question would still 

remain whether there are (or could be) real physical systems not involving randomness that 

are uncomputable. Theorists disagree about the answer – and sometimes the debate gets 

heated.  

In fact, to assume without warrant that the physical universe is computable might 

actually hinder scientific progress. If the universe is essentially uncomputable, and yet 

physicists are searching for a system of physical laws that would describe a computable 

universe, then bad physics is likely to ensue. Even in the case of brain science – let alone the 

study of the whole universe – simply assuming computability could be counterproductive. As 

philosopher and physicist Mario Bunge remarked, this assumption47 

'involves a frightful impoverishment of psychology, by depriving it of nonrecursive [i.e. non-

computable] functions.' 

In the next section, we will examine Turing's views on this question of computability 

and the brain – a microcosm of the debate about the grandscale question of whether the whole 

universe is computable. 

 
Turing's opinion 

It used to be widely believed that Turing had said, or perhaps even proved, that every 

possible physical system is computable. Earlier we saw Paul and Patricia Churchland 

asserting that Turing's results entail that all rule-governed behaviour is computable. Another 

example comes from David Deutsch, one of the pioneers of quantum computing, who put 

forward this variant of the PCT, calling it 'the physical version of the Church–Turing 

principle':48 
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'Every finitely realizable physical system can be perfectly simulated by a universal model 

computing machine operating by finite means.' 

Deutsch went on to say that 'This formulation is both better defined and more physical than 

Turing's own way of expressing it.' Deutch's thesis is indeed more physical than Turing's 

thesis; but it is a completely different thesis from Turing's, not a 'better defined' version of 

what Turing said! Turing was talking about human computers, not physical systems in 

general. 

 In similar vein mathematician Roger Penrose (the co-discoverer of black holes) 

stated:49 

'It seems likely that he [Turing] viewed physical action in general—which would 

include the action of a human brain—to be always reducible to some kind of Turing-

machine action.' 

Penrose even named this claim Turing's thesis. But, as we shall see, Turing never endorsed 

this thesis and was aware that the thesis might be false. 

 Andrew Hodges (the mathematician who wrote the biography that inspired the movie 

The Imitation Game) maintained in his book that Turing's work implied what is a close 

cousin of the PCT:50 

'Alan had ... discovered something almost ... miraculous, the idea of a universal machine that 

could take over the work of any machine.'  

Here Hodges, like Penrose, was suggesting that Turing's work entails that any physical 

mechanism is computable. He also stated that Turing claimed51 

'that the action of the brain must be computable, and therefore can be simulated on a 

computer.' 

 However, that was back in the bad old days. Modern Turing scholarship, by Hodges 

and others, now paints a very different picture. In fact there is no evidence that Turing ever 

understood his work on computability to rule out the possibility of mechanisms whose action 

is not computable. In 1999, one of us – Jack Copeland, together with Diane Proudfoot – 

suggested in an article in Scientific American that Turing was an important forerunner of the 

modern debate concerning the possibility of uncomputability in physics and uncomputability 

in the action of the human brain.52 In the same year Copeland also published a commentary 

on a lecture that Turing gave on BBC radio in 1951 titled Can Digital Computers Think?53: 

this commentary pointed out that, in the lecture, Turing noted the possibility that the physics 

of the brain might be uncomputable.54 Turing was contemplating the possibility of a physical 

system that is not computable. Hodges was persuaded by these observations (and, in a public 
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lecture, generously thanked Copeland for this new view of Turing, even saying on his website 

'I don't mind admitting that I wish I had thought of it').55 

 In the passage in question, Turing considered the claim that if 'some particular 

machine can be described as a brain we have only to programme our digital computer to 

imitate it and it will also be a brain'.56 He immediately went on to argue that this 'can quite 

reasonably be challenged', pointing out that there is a difficulty if the behaviour of the brain is 

not 'predictable by calculation' – if a human computer cannot predict the behaviour of a 

system by calculation, then the system is not computable. Turing referred to the view of the 

physicist Sir Arthur Stanley Eddington who, he pointed out, held that 'no such prediction is 

even theoretically possible', on account of 'the indeterminacy principle in quantum 

mechanics'. If Eddington is right about the impossibility of prediction, Turing argued, then 

the brain is not computable. 

 Happily a consensus has emerged that Turing – far from claiming that every physical 

mechanism, including the brain, must be computable – was in fact open to the idea that the 

brain, at least, is not a computable system. As Hodges recently put it:57 

'[Turing] was also one of the first to use a computer for simulating physical systems. In 1951, 

however, Turing gave a radio talk with a different take on this question, suggesting that the 

nature of quantum mechanics might make simulation of the physical brain impossible.' 

 
Conclusion 

Alan Turing never said that the physical universe is computable, and nor do any of his 

technical results entail that it is. Some computer scientists and physicists seem infuriated by 

the suggestion that the physical universe might be uncomputable; but it's an important issue 

and the truth is that we simply do not know. 
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