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Abstract

This Ph.D. thesis concerns the truthmakers of the computational theory of mind
(CTM). The CTM is the view that some, or all, of our cognitive processes are
computations. A potential problem with the CTM is that it is not clear what
it means for a system, such as the human brain, to perform a computation.
This problem is often glossed over in the literature—computation is assumed
to be just like what electronic computers do. Unfortunately, what electronic
computers do is far from clear. My thesis addresses this concern. Specifically,
it answers the question: under what conditions does a real-world system, such
as a human brain or electronic computer, perform one computation rather
than another? Searle (1992), Putnam (1988), and Kripke (1982) have argued
that the only possible answers to this question are anti-realist. On their view,
the computation that a system performs is a function of how human agents
interpret that system, rather than of the mind-independent world. If this were
true, then the consequences for cognitive science would be dire. Cognitive
science would not explain cognition, it would presuppose cognition. In my
thesis, I defend cognitive science from these anti-realist attacks. I argue that
mind-independent facts can determine the computation that a system performs.
My argument consists of two parts. First, I develop a semantics for computation
talk in the context of cognitive science. This provides an account of the semantic
content of our computational claims in that context. Then, I present an account
of the metaphysical facts that make that semantic content true or false. I argue
that these metaphysical facts are, at least possibly, mind-independent. The
resulting notion of computation is compared to the alternatives of Chalmers
(1996), Copeland (1996), and Mellor (1991a).
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On the one hand, we have a very elegant set of mathematical res-
ults ranging from Turing’s theorem to Church’s thesis to recursive
function theory. On the other hand, we have an impressive set
of electronic devices that we use every day. Since we have such
advanced mathematics and such good electronics, we assume that
somehow somebody must have done the basic philosophical work
of connecting the mathematics to the electronics. But as far as I can
tell, that is not the case. On the contrary, we are in a peculiar situ-
ation where there is little theoretical agreement on such absolutely
fundamental questions as, What exactly is a digital computer? What
exactly is a symbol? What exactly is an algorithm? What exactly is
a computational process? Under what physical conditions exactly
are two systems implementing the same program?

(Searle, 1992, 205)
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Introduction

Consider how one might multiply 12 by 10. There are a number of ways in
which one might proceed. For example, one might write down the numeral
‘12’ and place a ‘0’ to its right, producing the numeral ‘120’. Or one might add
ten twelves in a single sum: ‘12 + . . .+ 12 = 120’. Or one might add ten twelves
in eleven separate sums: ‘12 + 12 = 24’, ‘24 + 12 = 36’, ‘36 + 12 = 48’, . . . , ‘108
+ 12 = 120’. Or one might multiply 10 by 2 and add the result to 10 by 10:
‘10 × 2 = 20’, ‘10 × 10 = 100’, ‘100 + 20 = 120’. Or one might use a prepared
multiplication table, matching the numerals ‘10’ and ‘12’ with the appropriate
column and row and reading off the result.

These are only a few of the ways of computing 12 times 10. This thesis
concerns the conditions under which a system performs one computation rather
than another. In terms of the example above: what determines the way in which
a system computes 12 times 10? When do two systems compute 12 times 10
in the same way? Can an electronic machine compute 12 times 10 in the same
way as a human being?

These questions do not have obvious answers. As Searle (1992) remarks
in the opening quotation, we have advanced mathematics and sophisticated
electronics, but remarkably little in the way of philosophical theory on how the
two relate. This lacuna is particularly evident in the study of the mind. There
are currently two distinct traditions in the study of the mind: a physiological
tradition focusing on the physical makeup of brains, and a cognitive tradition
focusing on cognition and the computations supposed to constitute cognitive
processes. It is not obvious how the two traditions relate. Discussions in
cognitive science tend to gloss over this issue. Typically, some remarks are
made about 0’s and 1’s, and the discussion quickly moves on to describe the
failures and achievements of particular models. This misses an important point.
As Searle (1992) says, a crucial question for any model is: ‘How exactly does the
model relate to the reality being modelled?’ (p. 199).

An account of what it means to perform a computation is not just desirable
for cognitive science, it is essential. Cognitive science has come under a number

viii



INTRODUCTION ix

of attacks in recent years. Instead of questioning particular cognitive science
theories, these attacks question the discipline’s entire foundation. Three of
the best articulated attacks have come from Searle (1992), Putnam (1988), and
Kripke (1982). The thrust of their attacks is that the computation that a system
performs is not a mind-independent feature of that system. Computation is
invariably sensitive to, and requires, an interpretative agent.

If this were correct, then the consequences for cognitive science would
be serious. An expected pay-off from cognitive science is an explanation of
mental life in non-mental terms. If Searle, Putnam, and Kripke are right then
this pay-off is undeliverable: instead of explaining mentality, cognitive science
presupposes mentality from the start. The concept of computation used by
cognitive science is not an objective feature of the world, but reflects a feature
of our own minds. Anti-realism about cognitive science ensues. In this thesis, I
defend cognitive science from these anti-realist attacks. I put forward a realist
account of computation that aims to put cognitive science on a secure and
transparent foundation.

In what follows, the systems that perform computations are sometimes
described as ‘physical’, but nothing turns on this. If non-physical systems
can perform computations, then the same concerns apply equally to those
systems. Alternatively, if all systems are physical then the qualifier ‘physical’
can be dropped as unnecessary. The term ‘physical’ is used only to emphasise
that it is with the implementation of computation in real-world systems that
this thesis is concerned. In what follows also, for the sake of brevity, the
implementation of a computation in a real-world system is sometimes referred
to simply as ‘a computation’. Again, nothing turns on this. I do not wish to
deny that the notion of computation has other strands, or claim that the notion
of implementation in real-world systems is somehow primary or fundamental.
If another sense of computation is intended—for example, computation as an
abstract mathematical object—then that will be explicitly indicated in the text.

Cognitive science

Many cognitive processes appear to be mysterious and complex. It is not only
unclear how they work, it is unclear how they are even possible. Cognitive
science aims to answer these questions. The central claim of cognitive science
is that cognitive processes are computations. According to cognitive science,
we have certain cognitive processes because our brains perform distinctive
computations. The task of cognitive science is, roughly speaking, to describe
what those computations are.

Cognitive processes that have been explained in terms of computation in-
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clude syntax parsing, recognition of simple shapes, rational choice, and deduct-
ive inference. According to the cognitive science theories of these domains, it
is because our brains perform certain computations that we parse sentences,
recognise simple shapes, make rational decisions, and so on. Notable successes
of this approach include Chomsky’s theory of syntax and Marr’s theory of vis-
ion.1 The computational approach remains today the dominant view of how
the mind works.

Reliance on the notion of computation has both benefits and risks attached.
The benefit is that it provides a way of explaining how cognitive processes
are possible and how they work. Cognitive processes are possible because
computation is possible. Cognitive processes are just like what goes on inside
an electronic computer, and what goes on inside an electronic computer is
clearly possible. How cognitive processes work is explained by the particular
cognitive science theory in question. That theory provides a computation, or
a sketch of a computation, that describes how the cognitive process works.
Cognitive processes are explained by their computational structure.

The risk attached to the computational approach is that cognitive science
is made hostage to fortunes of the notion of computation. If the notion of
computation turns out to be problematic, or trivial, or interest-relative, then
cognitive science is in trouble. This should be a cause for worry for advocates of
cognitive science, since the nature of our notion of computation in these respects
is not obvious. It is conceivable, and anti-realists have argued, that the notion of
computation contains entailments that an advocate of cognitive science would
be reluctant to accept. Note that such debates cannot be resolved simply by
pointing to the widespread use of computation in electrical engineering and
the computer industry. As we shall see, it is far from obvious what it means for
an electronic PC to perform a computation either. In general, it is not obvious
what makes it true that a system perform one computation rather than another,
or even that it perform a computation at all.

A number qualifications should be added.
First, not everyone would agree with the characterisation of cognitive sci-

ence given above. The central tenets of the discipline are still a matter of
dispute. Nevertheless, many philosophers and cognitive scientists have ar-
gued that cognitive science should be characterised by the claim that cognition
is computation.2 I will work with this characterisation in this thesis. If one

1See Chomsky (1980); Marr (1982). Both theories have been substantially revised; for recent
views, see Chomsky (1995); Wandell (1995). It is a matter of controversy how Chomsky’s theory
of syntax relates to how we actually parse sentences. Fodor (1975); Fodor et al. (1974) provide a
computational interpretation of syntax parsing based on Chomsky’s account; see Rey (2003) for a
discussion of Chomsky’s own views.

2For example, see Fodor (2000), 3–4; Searle (1992), 197–198; Pylyshyn (1984), xv; Johnson-Laird
(1983), 8–9; Cummins and Cummins (2000), 6; Haugeland (1981), 31; Lachman et al. (1979), 107.
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does not wish to call this view ‘cognitive science’, then another name can be
substituted in its place.

Second, it is an open question whether the claims of cognitive science should
be interpreted as literal statements of fact, or as metaphors and useful heuristics.
In this thesis, I again follow the existing philosophical literature and interpret
the computational claims of cognitive science literally.3 This literal reading
of cognitive science is perhaps the most interesting to defend. If it can be
defended—and I shall argue that it can—then there seems little reason to retreat
to a metaphorical reading.

Third, cognitive science is not committed to the claim that computation is the
whole story about the mind. Cognitive science makes claims about particular
cognitive processes, e.g. syntax parsing, shape recognition, deductive inference.
The truth of these particular claims is compatible with other aspects of the mind,
including other cognitive processes, being non-computational. Indeed, it may
turn out that only relatively minor aspects of the mind are computational.

In what follows, the characterisation of cognitive science given above—the
claim that some cognitive processes literally are computations—shall be called
the ‘computational theory of mind’ (CTM).

Three anti-realist challenges

Three challenges to the realist status of computation are considered in this
thesis.

The first challenge comes from Searle (1992). Searle claims that ‘syntax is not
intrinsic to physics’.4 By this, Searle means the performance of a computation
is not determined by the mind-independent world. A system only performs a
computation because we, as interpreting agents, interpret it in a certain way.
Interpretation enters into the performance of a computation in two ways. First,
the performance of a computation cannot be a matter of the system having a
certain pattern of mind-independent activity. Suppose that this is false, e.g.
suppose that a desktop computer runs a particular program, say Microsoft
Word, because a certain pattern of activity takes place inside it. Searle points
out that the world is full of patterns of activity. Even a brick wall has patterns
of activity: vibrational activity, thermal activity, atoms changing state, and
so on. There is so much activity inside a brick wall that, argues Searle, there
is almost certain to be a pattern identical to that inside a desktop computer.
Therefore, as far as the mind-independent facts are concerned, a brick wall runs
Microsoft Word. This is clearly absurd. The performance of a computation

3For advocacy of a literal reading, see Fodor (2000), 3–4; Pylyshyn (1984), xiv–xv; Jackendoff
(1987), 17; Johnson-Laird (1988), 34–35; Newell and Simon (1976).

4Searle (1992), 207.
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must have extra conditions attached. Searle argues these extra conditions
involve the beliefs, interests, and attitudes of observers. The second way in
which interpretation enters into the performance of a computation is in the
assignment of computational states to physical states. Searle claims that there
is nothing intrinsic to a particular physical state that makes it a ‘0’ or ‘1’. We, as
interpreting agents, must interpret it as a ‘0’ or ‘1’. Therefore, the computational
identity of a system depends on the interpretations of observers.

The second challenge comes from Putnam (1988). Putnam gives a formal
proof, based on the assumptions of classical physics, that every open system,
considered in mind-independent terms, implements every finite state auto-
maton. The proof is specific to the implementation of finite state automata,
but Putnam claims that a similar result holds for any other computational ar-
chitecture. Therefore, every open system, considered in mind-independent
terms, performs every computation. This is bad news for cognitive science be-
cause cognitive science tries to explain how cognitive processes work in terms
of the performance of distinctive computations. If Putnam’s result is correct,
then there are no distinctive computations that the brain performs. The brain,
like everything else, performs every computation. Notably, Putnam’s result
leaves open the possibility of mind-dependent distinctive facts about computa-
tion. Although in terms of the mind-independent facts every system performs
every computation, if mind-dependent facts—beliefs, interests, attitudes, and
so on—are included, then there perhaps can be distinctive facts about compu-
tation. One assumes that this is how Putnam thinks computation should be
understood. Putnam is an anti-realist about all claims, so it is no surprise that
he is an anti-realist about computation claims too.

The third challenge comes from Kripke (1982). Kripke presents a sceptical
argument concerning rule-following and meaning. As part of his argument,
Kripke considers the case of machine rule-following. Computation and rule-
following are closely connected topics: in order for a machine to perform a
computation that machine must follow a rule. Kripke considers what fact
about a machine determines that it follows one rule, i.e. performs one compu-
tation, rather than another. His answer comes in two parts. First, he claims,
the computation that a given system performs cannot be fixed by the mind-
independent facts: an interpreting agent is needed for a system to perform a
computation. Kripke gives three arguments for this claim. An interpreting
agent is needed in order to: (i) interpret the inputs and outputs of the machine,
(ii) extend the machine’s finite actual behaviour to infinite possible behaviour,
and (iii) make the distinction between correct and incorrect functioning of the
machine. If there are facts about computation at all, then those facts are mind-
dependent. In the second part, Kripke goes on to argue that there are no
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mind-dependent facts about rule-following either. Therefore, according to his
argument, there are no facts about rule-following at all, either for humans or
computers. However, we shall only be concerned with the first step of Kripke’s
argument. Kripke’s second step has received attention elsewhere.5 We shall
restrict attention here to Kripke’s specific claim about machines: his claim that
the only way for a machine to follow a rule is for us to interpret it as doing so.

Searle, Putnam, and Kripke all conclude, for various reasons, that the facts
about which computation a system performs, or whether a system performs
a computation at all, are mind-dependent. In this thesis, I argue that such
anti-realism can be resisted. A realist notion of computation is available.

The positive position

This thesis puts forward a realist position on computation. The availability
of a realist account of computation depends on whether the facts that de-
termine which computation a system performs are mind-dependent or mind-
independent. If those facts can be mind-independent, then realism about com-
putation is true. If those facts must be mind-dependent, then realism about
computation is false. The primary concern of this thesis is therefore: what kind
of metaphysical facts constitute a system performing one computation rather
than another?

Metaphysical questions like this cannot be answered in a single step. Before
arriving at an answer, it is necessary to have a clear view of the semantics of the
relevant area. We must be clear on what we mean by our computation claims
before we can give an account of the facts that make them true or false. The
situation can be phrased in the following way. Whether a particular system
performs a computation depends on two factors: (1) on what we mean by ‘per-
forms a computation’; and (2) on the way the world is. The first component
concerns the semantics of our computation talk. The second component con-
cerns the metaphysics, the truthmakers, of that talk. A potential problem facing
the project described above is that the second component cannot be addressed
without presupposing an account of the first.

The aim of this thesis is to give an account of the metaphysical component.
I am interested in whether the facts that make computation claims true or
false are mind-dependent or mind-independent. Searle, Putnam, and Kripke
argue that those facts must be mind-dependent. I argue that they can be mind-
independent. It is worth noting that there is no argument over whether the facts
underlying the semantic component are mind-dependent or mind-independent.
Both realists and anti-realists about computation can agree that what we mean

5For example, see Miller and Wright (2002) and references.
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by our words is mind-dependent (although they may disagree about whether
all representations are mind-dependent). The string of letters ‘computation’
means computation because of the way in which we interpret those symbols in
our linguistic community. In another community, with different beliefs and
attitudes, the string of letters ‘computation’ might not mean anything at all.
The semantic content of our words is clearly mind-dependent. The distinctive
claim that the realist about computation makes is that the second, metaphysical,
component is mind-independent.

As noted above, the metaphysical and semantic projects are inter-related.
The nature of the metaphysical component cannot be settled without some
view on the contribution of the semantic component. Therefore, it would not be
satisfactory if this thesis were to attempt to answer the metaphysical question
without providing some justified account of the semantic component. The
strategy that I follow in this thesis is to start by giving an account of the semantic
component, and then tackle the metaphysical component. Metaphysics can of
course inform semantics, but at least initially it seems reasonable to start with
a prima facie semantics. The order of this two-step approach is not uncommon.
It is the way that Lewis deals with counterfactuals: first he provides a semantic
account of the content of counterfactual talk (Lewis, 1973), then he provides
an account of the metaphysics that make that content true or false (Lewis,
1986b). One of the clearest exponents of the two-step approach is Hugh Mellor,
as demonstrated in his analyses of properties and dispositions (Mellor, 1991b,
2000).

Let us consider each part of the two-step approach.
The semantic part gives an account of what we mean by our computation

talk. The semantic account put forward in this thesis is based on two key in-
tuitions. The first intuition is that computation involves representation. The
second intuition is that computations are made up of parts, and that two com-
putations are the same just in case they have the same parts and those parts are
connected in the same ways. The work of formalising these intuitions takes up
most of Chapters 3 and 4. The resulting formal semantic model is called the
process and representation model (PR-model). The PR-model specifies what we
mean when we say that a given system performs a particular computation. In
other words, it specifies the semantic content of our computation claims. Once
this semantic model is in place, we are then in a position to evaluate what kinds
of metaphysical facts can make that content true or false.

The PR-model produces statements of the following form: ‘System S per-
forms computation C’ is true iff conditions X, Y, Z obtain. The metaphysical
part of the project gives an account of the facts that make conditions X, Y, Z ob-
tain. In particular, it considers whether those facts can be mind-independent, or
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whether they must be mind-dependent. The realist about computation claims
that they can be mind-independent, the anti-realist claims they must be mind-
dependent. The PR-model specifies X, Y, Z in terms of standard metaphysical
notions. These metaphysical notions are representation, numerical identity,
and counterfactual dependence. Therefore, according to the PR-model, state-
ments such as ‘System S performs computation C’ are true just in case a number
of conditions concerning representation, numerical identity, and counterfactual
dependence obtain. Therefore, the metaphysical facts that make computation
claims true are just facts about representation, numerical identity, and counterfactual
dependence. If one can be a realist about these metaphysical notions, then one
can be a realist about computation.

This thesis does not specifically argue for realism about representation, nu-
merical identity, or counterfactual dependence. That has been argued for at
length elsewhere.6 The purpose of this thesis is to establish the conditional
claim that if facts about representation, numerical identity, and counterfactual
dependence are mind-independent, then facts about computation are mind-
independent too. Many philosophers have defended realism about these ante-
cedent notions for reasons independent of any concerns about computation
or cognitive science. If one is willing to accept these defences—and it is not
clear that they are wrong—then realism about computation can be had at no
extra cost. (The argument is, of course, symmetrical: if realism about these
antecedent notions is impossible, then according to the account of computation
in this thesis, realism about computation is impossible too).

Outline of thesis

The problem that this thesis aims to address is what makes a system perform one
computation rather than another. The first two chapters of the thesis introduce
the problem. The remaining four chapters provide a solution.

Chapter 1 introduces the problem via the example of Searle’s Chinese room
argument. I argue that Searle’s Chinese room argument fails because it assumes
that the Chinese room can run any program. The Chinese room cannot run
any program. The programs that a system can run depend on that system’s
computational architecture. This raises part of the main question of this thesis:
what determines a system’s computational architecture?

Chapter 2 generalises the problem in two ways. First, the focus is widened
from programs to computation in general. Second, it is shown that wider
issues than the Chinese room argument depend on the nature of computational
identity, including realism about cognitive science. The anti-realist arguments

6See references in the final section of this introduction.
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of Searle, Putnam, and Kripke are introduced. An overview is given of existing
solutions, including those of Chalmers (1996), Copeland (1996), and Mellor
(1991a). I argue that none of these existing solutions is satisfactory.

Chapter 3 begins with a brief overview of how computation is used in cog-
nitive science. I then introduce the two key intuitions involving computation:
(i) computation involves representation, and (ii) computations are the sum of
their parts. The PR-model aims to formalise these intuitions into a substantial
account of computation. The rest of the chapter is devoted to the basic concepts
of the PR-model and the kinds of metaphysical commitments they entail.

Chapter 4 defines the PR-model itself in a step-by-step way. The PR-model
provides an account of what we mean by our computation talk in terms of
the notions of identity, counterfactual dependence, representation, and explan-
ation. The details of how these notions fit together to form the notion of
computation are specified by the definitions given in this chapter.

Chapter 5 applies the PR-model to real-world examples of computation talk.
It is shown how stored-program, connectionist, and other kinds of computation
talk can be accommodated in the PR-model. In the second half of the chapter, an
account, based on the PR-model, is given of what it means for two computations
to be the same or different. Finally, some pragmatic features of computation
talk are discussed.

Chapter 6 deals with the truthmakers of computation talk. I argue that these
truthmakers can be mind-independent. The PR-model provides an account of
what we mean in terms of identity, counterfactual dependence, representation,
and so on. I describe pre-existing strategies for how one can be a realist about
these notions, and thereby be a realist about computation.

Relation to the literature

There are a number of topics that I do not address in this thesis. I do not
attempt to provide a new analysis of representation, counterfactual depend-
ence, identity, or explanation. The purpose of this thesis is to reduce the notion
of computation to these other notions, not to provide a new analysis of these
notions in turn. The nature of representation, counterfactual dependence, iden-
tity, and explanation has already received considerable attention elsewhere.7 It
bears repeating that this thesis does not provide an account of representation

7See Lewis (1973, 1979, 1986b) and references for the nature of the counterfactual dependence
relation. See Cummins (1989); Dretske (1981); Fodor (1990b); Haugeland (1990); Millikan (1986);
Stich and Warfield (1994) and references for the nature of the representation relation. See Brody
(1980); Noonan (1980, 1993); van Inwagen (1990); Wiggins (2001) and references for the nature of the
identity relation. See Achinstein (1983); Boden (1988); Cummins (1983); Dennett (1971); Haugeland
(1978); Hempel (1965); Neisser (1967); Pylyshyn (1984, 1999); Simon (1969) and references for the
nature of explanation and explanation of cognitive processes.
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or intentionality. I presuppose representation in order to give an account of
computation. Representation has to be accounted for in some other way.

There are a number of other challenges to cognitive science that I do not
consider in this thesis. These challenges include the claims that: (1) the func-
tion computed by certain mental processes is, in principle, not reproducible
by a computer (Lucas, 1961; Penrose, 1989); (2) certain aspects of mentality
involve a background that cannot be formalised in terms of symbols and com-
putations (Dreyfus, 1992; Searle, 1992); (3) central cognitive processes, such as
those involved in solving the frame problem, are not computational (Fodor,
1983, 2000); (4) non-computational accounts of cognition, such as a dynamical
systems approach, an ecological approach, or a Gestalt approach, are in some
cases preferable to a computational account (Gibson, 1979; van Gelder, 1995;
Wertheimer, 1985); (5) consciousness, moods, skills, and understanding cannot
be accounted for by computation (Haugeland, 1978, 1981).

These challenges are, at least in one sense, less troubling than the anti-
realist challenge. This is because, for each of these challenges, the cognitive
scientist can in the worst case concede the challenge without irreparable damage
to her position. Cognitive science does not claim that all mental processes
are computational, only that some are. Even if central cognitive processes,
consciousness, and so on are not computational, that is no reason to think that
cognitive science is not true of other mental processes, such as syntax parsing
and shape recognition. The same concessive strategy cannot be used in reply
to Searle, Putnam, and Kripke. Here the challenge threatens the status of all
claims of cognitive science, not just the discipline’s application to particular
domains.

There are a number of topics addressed by this thesis that are sometimes er-
roneously grouped under the heading of challenges to cognitive science. These
topics include connectionist approaches to cognition (Rumelhart et al., 1986;
Smolensky, 1988) and extended cognition (Clark, 1997; Clark and Chalmers,
1998; Hutchins, 1995). I believe that, properly understood, these approaches
are not challenges to cognitive science. They are compatible with the claim
that cognition is computation. In Chapter 5, I show how these theories can be
accommodated by a notion of computation.

For the purpose of this thesis, I am neutral on a number of key debates
in cognitive science. I am neutral on whether the representations on which
cognitive computations operate are sentence-like and directly map onto pro-
positional attitudes (Fodor, 1975; Fodor and Pylyshyn, 1988; Harman, 1973;
Pylyshyn, 1984), or whether those representations are of a different kind and
have less direct relations to the notions of folk psychology (Churchland, 1981,
1986; Dennett, 1978b; Stich, 1983). I am neutral on whether the architecture of
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the mind is classical or connectionist, whether folk psychology is true or false,
whether the computational structures of the brain are innate or acquired, and
whether, and to what extent, the mind is modular. These are all important
questions, but they do not directly impact on the question of this thesis.

It is worth emphasising that my intention is not to argue that the CTM is
true. Whether a particular computational claim is true or false is, I shall argue,
an empirical matter. My intention is rather to show that computational claims
have empirical content—to show that computational claims are made true or false
by the world, not by our attitudes as interpreting agents. It is the possibility of
realism about cognitive science theories that is defended by this thesis, not the
truth of particular theories.

Finally, there are there are a number of topics that I would like to have ad-
dressed but did not have the time or space. These topics include: (1) showing
that traditional functionalism cannot provide an account of the metaphysics of
computation suitable for cognitive science; (2) an account of the epistemology of
computation, i.e. how we know which computation a system is performing; (3)
a discussion of how the notion of computation developed in this thesis relates to
the notion of computation in mathematical logic; (4) a discussion of how the no-
tion of computation developed in this thesis relates to Pylyshyn’s (1984) notion
of cognitive architecture; and (5) a discussion of how internalism/externalism
about representation relates to internalism/externalism about computational
identity. I hope to address these topics in future work.



Chapter 1

Chinese rooms and program
portability

This chapter introduces the topic of this thesis using the example of Searle’s
Chinese room argument. I argue that Searle’s Chinese room argument fails
because it depends on the assumption that the Chinese room can run any
program. This assumption is false, and it cannot be weakened in such a way as
to save Searle’s claim. A number of possible objections are considered. I argue
that these objections fail. Responding to the objections introduces some of the
main themes of this thesis.

1.1 Searle’s argument

Searle’s Chinese room argument is an argument against the possibility of Strong
artificial intelligence (Strong AI). The thesis of Strong AI is that the running of
a particular program is sufficient for, or constitutive of, mentality: it is simply
in virtue of running a particular program that a system has mentality. One
aspect of mentality is understanding, and this is the aspect on which Searle
focuses. Searle appreciates that understanding is a complex notion, so he has a
particular form of understanding in mind: the understanding of simple stories.
He considers whether the Strong AI thesis holds in this case.

It seems intuitively obvious that when I read a simple story in English, I
understand that story: somewhere in my head there is understanding going
on. However, if I read a simple story written in Chinese (a language that I
do not speak), there is no understanding going on. What makes the difference
between these two cases? The advocate of Strong AI says that the difference lies
in the fact that I run a particular program in the case of English stories and that

1
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I do not run a particular program in the case of Chinese stories. If the program
for understanding Chinese stories were given to me, then I would be able to
understand Chinese stories. Similarly, if that program were given to any other
sufficiently complex system (e.g. a Turing machine), then it too would be able to
understand Chinese stories. The general thesis of AI is labelled below as (AI*).
The thesis that Searle considers—whether the running of a particular program
is sufficient for, or constitutive of, understanding simple Chinese stories—is
labelled (AI):

(AI*) Running a program is sufficient for, or constitutive of, mentality.

(AI) Running a program is sufficient for, or constitutive of, understanding
simple Chinese stories.

Searle argues that (AI) is false. If this were so, then the general claim (AI*) would
be false too, since one of its instances is false. At this juncture, it would be open
to an advocate of Strong AI to modify her position to accept the falsity of (AI),
while still holding on to the general idea that running a program is constitutive
of perhaps other aspects of mentality. However, this is not an option that I shall
consider. I shall focus only on Searle’s argument against (AI).

Searle’s argument against (AI) is as follows. Imagine a monolingual English
speaker inside a room with a rule-book and sheets of paper. The rule-book con-
tains instructions in English on what to do if presented with Chinese symbols.
The instructions are of the form: ‘If you see Chinese symbol X on one sheet of
paper and Chinese symbol Y on another, then write down Chinese symbol Z
on a third sheet of paper’. Pieces of paper with Chinese writing are passed into
the room and the person inside follows the rules and passes pieces of paper out.
Chinese speakers outside the room label the sheets that are passed in ‘story’
and ‘questions’ respectively, and the sheets that come out ‘answers to ques-
tions’. Imagine that the rule-book is as sophisticated as you like, and certainly
sophisticated enough that the responses that the person inside the room gives
are indistinguishable from those of a native Chinese speaker. Does the person
inside the room thereby understand Chinese? Searle claims that they do not.
The person inside the room does not understand Chinese simply in virtue of
following a particular rule-book. Some respondents to Searle reject this claim,
arguing that the person inside the room does understand Chinese. However, I
am going to grant Searle his key intuition, and claim that his argument fails on
other grounds.1

Searle notes that the Chinese room is a computer, and he identifies the

1In this and what follows, the expression ‘understanding simple Chinese stories’ is sometimes
abbreviated to ‘understanding Chinese’.
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rule-book with the program that it runs. He then reminds us that the thought
experiment does not depend on the particular rule-book used. It does not
matter how sophisticated the rule-book, the person inside the room will still just
be mindlessly shuffling symbols, and not understanding Chinese. Since rule-
books are programs, the thought experiment demonstrates that the Chinese
room cannot understand Chinese no matter what program it runs. The Chinese
room is a universal computer, which according to Searle, means that it can run
any program. Therefore, we can conclude that no program can be constitutive of
understanding.

The argument is sometimes presented in an alternate form. Take the best
attempt at a program that is constitutive of understanding—for example, the
best program that the AI research could ever hope to produce, or the program
that actually runs on Chinese speakers’ brains. Since the Chinese room is a
universal computer, it will be able to run that program. However, we cannot
imagine the person inside the Chinese room ever understanding Chinese, no
matter what program they are given. Hence, no such program that is sufficient
for, or constitutive of, understanding can exist.

Both arguments appear in Searle’s work.2 Both arguments depend on an
assumption that I am going to challenge. I will lay out the arguments in more
detail now.

The first argument has two premises. The first premise is Searle’s key
intuition that the person inside the room does not understand Chinese stories.
The second premise is that the person inside the room can run any program.
These two premises deductively entail that no program can be sufficient for, or
constitutive of, understanding Chinese stories. The argument has the following
form:

Searle’s straight argument

The man in the room cannot understand Chinese stories
(G) The man inside the Chinese room can run any program

∴ No program can be sufficient for, or constitutive of, understanding
Chinese

Therefore, (AI) is false.

Searle begins his original article with the second argument given above.
This argument has the form of a reductio ad absurdum. It runs as follows: ‘Let’s

2An example of the first argument: ‘I [the man inside the Chinese room] have inputs and
outputs that are indistinguishable from those of a native Chinese speaker, and I can have any
formal program you like, but still I understand nothing.’ (Searle, 1980b, 418). An example of the
second: ‘I offer an argument that is very simple: instantiating a program could not be constitutive
of intentionality, because it would be possible to instantiate the program and still not have the right
kind of intentionality. That is the point of the Chinese room example.’ (Searle, 1980a, 450).
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assume that the mind actually works this way, let’s assume that Strong AI
is correct, what consequences ensue?’ One consequence is that the person
inside the room, if given the right rule-book, would be able to understand
Chinese. But, says Searle, that is absurd. We cannot imagine the person inside
the room ever understanding Chinese no matter what rule-book they are given.
Therefore, something must have gone wrong with our premises. Our main
premise was that Strong AI is true, so it must be that Strong AI is false. This
argument has the following form:

Searle’s reductio argument

(AI) Running a program is sufficient for, or constitutive of, understanding
Chinese stories

(G) The man inside the Chinese room can run any program

∴ The man inside the room can understand Chinese stories

Can’t be!

So either (AI) or (G) must be false.

(G) is true, therefore (AI) must be false.

Both versions of Searle’s argument depend on assumption (G): the assump-
tion that the Chinese room can run any program. It is easy to see why. Searle’s
argument only works as an argument against Strong AI if the Chinese room
argument speaks to the general case. Otherwise, it would leave open the possib-
ility that there is a program constitutive of understanding, but it so happens that
the Chinese room cannot run that program. In order to make the Chinese room
argument work as a general argument against Strong AI—in order to make it
speak to the general case of Strong AI rather than to just the specific case of the
Chinese room—Searle needs a generalising assumption like assumption (G).
My strategy in criticising Searle is to argue that assumption (G) is false.

1.1.1 Qualified versions of Searle’s argument

It is possible to weaken assumption (G) and keep Searle’s conclusion. Below
are variants of the arguments above that weaken assumption (G) as much as
possible while preserving his anti-Strong AI conclusion:
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Searle’s qualified straight argument

The man in the room cannot understand Chinese stories
(G*) The man inside the Chinese room can run all programs putatively

constitutive of understanding

∴ No program can be sufficient for, or constitutive of, understanding
Chinese

Therefore, (AI) is false.

Searle’s qualified reductio argument

(AI) Running a program is sufficient for, or constitutive of, understand-
ing Chinese stories

(G**) The man inside the Chinese room can run a program constitutive of
understanding

∴ The man inside the room can understand Chinese stories

Can’t be!

So either (AI) or (G**) must be false.

(G**) is true, therefore (AI) must be false.

The argument that I present below works just as well against assumptions
(G*) and (G**) as it does against assumption (G). Therefore, in what follows my
claim is not just that (G) is false, but also that (G*) and (G**) are false. The dis-
cussion is phrased in terms of assumption (G) only for reasons of convenience.
Searle’s argument cannot be saved by weakening assumption (G).

1.1.2 Standard replies

Before turning to the details of the argument, it is worth comparing this strategy
to standard replies to Searle.

Robot reply

Many advocates of artificial intelligence argue that an extra ingredient is re-
quired for a Chinese room to understand, and that extra ingredient is human-
like causal connection to the world. A computer working in isolation could not
understand Chinese stories, but a robot with appropriate causal connections
potentially could. This reply, as Searle notes, concedes the main point of his ar-
gument. The robot reply admits that more than just computation is needed for
understanding: appropriate causal connections are also needed. My reply dif-
fers from the robot reply. The robot reply accepts the conclusion of the Chinese
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room argument, while I reject it. The robot reply describes how computers
can be supplemented so as to understand, my reply focuses on a mistake in the
original Chinese room argument. Searle goes on to argue that even if one were
to accept the robot reply, Strong AI still cannot be saved: a robot with appro-
priate causal connections with the world still would not be able to understand
Chinese. However, Searle’s additional argument will not be considered here.3

Systems reply

The systems reply claims that although the man cannot understand Chinese,
the system as a whole—the man, plus rule-book, plus pens, plus pieces of
paper—can understand Chinese. The systems reply switches the subject of
understanding from the man to the room. The hope is that by performing this
switch, the advocate of the systems reply can avoid Searle’s conclusion. She
does this in the following way.

First, she avoids Searle’s reductio argument. Searle’s reductio was that if
Strong AI were true, then the man inside the room would be able to understand
Chinese given the right rule-book, and that is absurd. The systems reply holds
that if Strong AI were true and the person inside the room were given the right
rule-book, then the room as a whole would be able to understand Chinese. The
advocate of the systems reply claims that this conclusion is not absurd.

The system reply variation I

(AI) Running a program is sufficient for, or constitutive of, understand-
ing Chinese stories

(G***) The room can run any program

∴ The room can understand Chinese stories

The advocate of the systems reply accepts this conclusion.

Searle’s straight argument can also be avoided if one accepts that the room
as a whole can understand Chinese stories. In Searle’s straight argument, if (G)
is replaced with (G***), then Searle’s conclusion—that no program can be suffi-
cient for, or constitutive of, understanding Chinese—is no longer deductively
entailed.

The system reply variation II

The man in the room cannot understand Chinese stories
(G***) The room can run any program

Searle’s original conclusion does not follow.

3For this argument against the robot reply, see Searle (1980b), 420.
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In both cases, the advocate of the systems reply needs to accept assumption
(G***), or something like it, in order to support her claim that the room can
understand Chinese. My reply differs from the systems reply in that I reject
not only assumption (G), but also assumption (G***). I claim that it is not only
false that the man can run any program, it is also false that the room can run
any program.

Such a variety of arguments have been grouped under the heading of sys-
tems replies that this cannot do justice to all of them. Some variants of the
systems reply are compatible with my reply. For example, Copeland’s (2002)
‘logical reply’ claims that Searle commits a fallacy in the inference from the man
not understanding Chinese to there being no Chinese understanding inside the
room, but does not itself assert that the room understands Chinese. The logical
reply is compatible with my reply since it is not committed to the claim that
the room itself can run programs constitutive of understanding. Nevertheless,
the logical reply and my reply are different. Both replies involve pointing out
a mistake in Searle argument, but they are different mistakes. My reply claims
that Searle makes a mistake by assuming that the Chinese room can run the
relevant programs, the logical reply claims that Searle makes a mistake by as-
suming that if the man inside the Chinese room cannot understand Chinese
then the system as a whole cannot understand Chinese.4

Procedural semantics reply

Another popular reply to Searle is to claim that Searle’s key intuition—that
the person inside the room cannot understand Chinese—is false. This reply
typically takes one of two forms. In the first form, the respondent claims that
the man inside the Chinese room fully understands Chinese. Any commonsense
intuitions to the contrary are, like many commonsense intuitions, mistaken.5

The second form of this reply admits that the man inside the room cannot
fully understand Chinese, but claims that he nevertheless can have a partial
understanding of Chinese. Typically, the suggestion here is that the man can
learn the procedural semantics of Chinese, even though he cannot learn what
the Chinese symbols refer to.6

Both kinds of reply face problems. Searle’s intuition that the man does not
understand Chinese is fundamental to his position. It is not obvious how to
find grounds on which to over-rule this intuition without begging the question
against Searle. For example, appeal to third-person evidence is regarded as
suspect by Searle in this context because the priority of third-person evidence

4See Copeland (2002) for details of the logical reply.
5For example, Block (1980); Hofstadter and Dennett (1981).
6For example, Boden (1989); Sloman (1986).
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over his first-person intuitions is itself at stake in the Chinese room argument.7

The second kind of reply faces the problem that it leaves an important sense
of Chinese understanding untouched, namely, that associated with referential
semantics. Even if computation is sufficient for some aspects of understanding
Chinese, it appears to be enough for Searle’s argument to work if other aspects
of understanding Chinese are not achievable by computation. It is not obvious
that either of these problems is serious, but they both require careful attention
if either reply is to be successful against Searle. My strategy in criticising Searle
differs from both these replies. I grant Searle his key intuition and claim that
his argument fails on other grounds.

1.1.3 The Church–Turing thesis

Before discussing why assumption (G) is false, let us first consider why Searle
might think that it is true. Searle does not say much about this in Searle (1980b),
but it is possible to infer what his views are likely to be. Consider the following
statement in Searle (1992):

We begin with two results in mathematical logic, the Church–Turing
thesis and Turing’s theorem. For our purposes, the Church–Turing
thesis states that for any algorithm there is some Turing machine
that can implement that algorithm. Turing’s thesis says that there is
a universal Turing machine that can simulate any Turing machine.
Now if we put these two together, we have the result that a universal
Turing machine [which is what Searle thinks a Chinese room is] can
implement any algorithm whatever. (Searle, 1992, 202)

If this characterisation is correct, then it would justify Searle’s assumption
that a Chinese room can run (‘implement’) any program. However, there are
two problems. First, Searle’s statement of the Church–Turing thesis is incorrect.
The Church–Turing thesis does not state that for any algorithm there is some
Turing machine that can implement that algorithm. The Church–Turing thesis
states that for any computable function (set of input–output pairings) there is
some Turing machine that can reproduce that function. There is a big difference
between a function (a set of input–output pairings) and an algorithm used for
computing that function. Searle needs equivalence in algorithms, not functions,
for his argument to work, and the Church–Turing thesis is silent about that.
The second problem with Searle’s statement is that the notion of simulation
in Turing’s theorem is a technical one. In the context of Turing’s theorem,

7See Sprevak (2005) for a discussion of this issue, and Searle (1980a) for the status of third-person
evidence.
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simulation means reproduction of input–output pairings. Simulation does not
mean, as Searle suggests, implementation of the same algorithm.

The Church–Turing thesis and Turing’s theorem do not justify the assump-
tion that the Chinese room can run any program, even under the dubious
assumption that the Chinese room is a universal Turing machine. Therefore,
the Church–Turing thesis cannot support Searle’s argument in the required
way. However, my argument is not just that assumption (G) is unjustified, but
that it is false. If I am correct, then one should not be surprised that the Church–
Turing thesis does not licence assumption (G), since such an entailment would
be false.8

1.2 Criticism of Searle’s argument

Searle’s argument against (AI) depends on some version of the assumption that
the Chinese room can run any program. Without this assumption, Searle would
leave open the possibility that there is a program constitutive of understanding,
but that it so happens that the Chinese room cannot run that program. We saw
that Searle’s reasons for believing that the Chinese room can run any program
were doubtful. I will now argue that the assumption that the Chinese room can
run any program is false.

The assumption that the Chinese room can run any program is false because
even if the Chinese room is a universal computer, it is not true that a universal
computer can run any program. The programs that a computer (universal
or otherwise) can run depend on that machine’s architecture, on the basic
operations that machine can perform. Programs are at the algorithmic level,
and that level is tied to the implementation on particular machines. One cannot
take a program that computes the addition function on, say, a register machine
and run that same program on a Turing machine. The programs that can be run on
the two machines are different in each case. This does not mean that a register
machine and a Turing machine cannot compute the same functions. Famously,
they can. The Church–Turing thesis states that any computer’s input–output
behaviour can be exactly reproduced by a universal computer. But this is
equivalence at the level of input–output behaviour, and what Searle needs for

8Copeland (1998) also criticises Searle for making a mistake with the Church–Turing thesis.
Searle says that the Church–Turing thesis entails that any physical process can be simulated by a
computer (Searle, 1992, 200). Copeland correctly points out that this is false: the Church–Turing
thesis entails that a process can be simulated only if there is an effective method governing that
process’s input–output behaviour. Copeland argues that this requirement need not be met by all
physical processes. Both the current and Copeland’s point concern the Church–Turing thesis, but
they are different points. Copeland’s point concerns the conditions under which the Church–Turing
thesis can be applied to certain physical systems. My point concerns what can be gained from the
Church–Turing thesis once it has been applied to those systems.
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his argument to work is equivalence at the level of how that input–output is
achieved, i.e. equivalence in the programs run.

The Chinese room can, by definition, reproduce the input–output char-
acteristics of any Chinese speaker. However, this is not enough for Searle’s
argument. What Searle needs is for the Chinese room to reproduce that input–
output pattern in the same way—to run the same programs—as a Chinese
speaker. In particular, Searle needs the Chinese room to be able to run the pro-
grams that Strong AI claims are constitutive of understanding. However, the
programs that a system can run depends on that system’s architecture. Certain
architectures can run some programs and not others. This is true independ-
ently of whether the system is a universal computer or not. Being a universal
computer reflects a capacity for universality in input–output behaviour, not a
capacity for universality in programs that can be run.9

No computational architecture can run all programs. A Chinese room can
run some programs and not others. The problem for Searle is that there is no
reason to think that a Chinese room can run all or even any of the programs
that are putatively constitutive of understanding. Indeed, there are good reas-
ons to think that it cannot. Systems that do understand, for example, human
brains, have a radically different computational architecture to that of a Chinese
room. An advocate of Strong AI could claim that only these brain-like architec-
tures are capable of running programs that are constitutive of understanding.
Since Chinese rooms cannot run these programs, Searle’s argument cannot rule
out the possibility that these programs produce understanding. Therefore, an
advocate of Strong AI could legitimately hold onto her claim.

Searle’s argument fails because it fails to consider all the relevant programs.
Searle’s assumption—that the Chinese room can run the programs that the
advocate of Strong AI thinks are constitutive of understanding—seems false.
At the very least, it is an assumption that would require substantial defence.
We’ve seen that Searle’s defence in terms of the Church–Turing thesis does
not work. Searle does not have anything to add to this defence. So as things
stand, the advocate of Strong AI has the upper hand. She can justifiably reject
the Chinese room argument. She can say that the Chinese room argument
fails to show that understanding cannot consist in the running of a program,
because the programs that she thinks are constitutive of understanding aren’t
even considered by the argument.

9Briefly put, the mistake that Searle makes is to conflate the computational and algorithmic
levels distinguished by Marr. Marr’s computational level concerns what function is computed, his
algorithmic level concerns how that function is computed. See Marr (1982), 22–24.
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1.2.1 Differences in architecture

I have said that the architecture of the Chinese room is different from that of
brains. What are the specific differences between the two systems? There is not
enough known to give a full answer, but there are good reasons for thinking
that there will be radical and irreconcilable differences.

For example, consider the difference between parallel and serial architec-
tures. The Chinese room is specified as having a serial architecture (it performs
one operation at a time). Assume, as seems reasonable, that the brain has a par-
allel architecture (it can perform more than one operation at a time). Programs
that exploit specifically parallel architectures, for example, parallel search al-
gorithms, literally cannot be run on serial machines. They rely on certain
capabilities and atomic operations that are not available on those machines.
Serial and parallel computers can compute the same functions, but they cannot
use the same methods for computing those functions. If the brain has a parallel
architecture, and the programs that it runs are essentially parallel—as seems
likely—then those programs literally cannot be run on a Chinese room.

Serial–parallel differences are only one of many ways in which the architec-
ture of brains is likely to differ from that of Chinese rooms. Another possible
difference is that the two systems may support different types of atomic opera-
tion. As specified by Searle, the Chinese room supports the atomic operations
compare, copy, and concatenate. There seems no reason why the brain should
support just these operations. If there is any difference in the atomic operations
supported, then the individual steps in the programs on the two machines can-
not be the same, creating problems for the notion that the two machines can
run the same program.

Another possible source of difference is that the brain may have a different
way of managing control from the Chinese room. There are many examples
of architectures with different control from the von Neumann model that the
Chinese room approximates. Consider the difference between the programs
that can be run on an ordinary von Neumann-style personal computer and
those that can be run on a computer based on Church’s λ-calculus. Imagine
trying to run a PC version of Microsoft Word on a machine with a λ-calculus
architecture. Such a program could not be run as it currently stands. A λ-
calculus version of Microsoft Word—a program with the same input–output
pairings—would have to work in a radically different way. (For one thing, on
a λ-calculus architecture there are no loops, instructions, or stored variables.
Therefore, the standard von Neumann construction of a looped assignment
statement cannot be run.) The brain may have a computational architecture
that is as distant, or more distant, from the von Neumann model than the λ-
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calculus. For example, the von Neumann distinction between central processor
and memory seems not to hold for the brain. Neurons, or group of neurons,
appear to act as independent processors, and memory seems to be encoded in
these processing units rather than in an independent central store.10

1.2.2 Summary

Searle’s Chinese room argument fails because his assumption (G), or any suit-
ably qualified version of it, is false. The architecture of brains and Chinese
rooms is different. There is no reason for the advocate of Strong AI to ad-
mit that even one program that is putatively constitutive of understanding can
be run on a Chinese room. She could legitimately claim that understanding-
producing programs are run on brain-like architectures. So as things stand,
the advocate of Strong AI can hold onto her Strong AI thesis for architectures
other than that of the Chinese room. Searle’s argument against Strong AI fails
to rule out the possibility that understanding can consist in the running of a
program.11

1.3 Objections and replies

1.3.1 The virtual brain machine objection

Objection 1. Can’t a Chinese room simulate any other computer? Can’t one create,
on the Chinese room computer, a virtual machine with the same architecture as the
brain and run the brain’s program on that virtual machine? Wouldn’t the Chinese
room then be able to run any program that could be run on the brain?

Consider how such a proposal would work. Suppose that Strong AI claims
that there is a program P that runs on the brains of Chinese speakers, and that
program P is sufficient for, or constitutive of, understanding Chinese. Program
P will be peculiar to the architecture of the human brain. It will use distinctive
atomic operations, and manage flow of control and data in distinctive ways.
Program P cannot be run on a Chinese room as it stands. The current suggestion
is that one can get around this incompatibility by creating another program Q
that runs on the Chinese room, a virtual brain machine (VBM). Program Q takes

10See Backus (1978) for a survey of different computational architectures and the effect that
architecture has on the programs that a system can run. See Johnson-Laird (1988) for a comparison
between the von Neumann model and the brain.

11This reply to Searle has not, to my knowledge, been made in the literature. The replies to
Searle that come closest are those of Lycan (1980); Rey (1986); Roberts (1990). None of these authors
make the connection with the Church–Turing thesis or the architecture-dependence of programs.
I came upon my criticism independently, but my discussion can rightly be seen as an elaboration
and defence of their original suggestion.
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programs designed to be run on the human brain as data. Program Q processes
these brain-like programs and produces output that is indistinguishable from
that of the programs being run on a real brain. For many intents and purposes,
a Chinese room running a virtual brain machine can be treated as a machine
with the architecture of a brain. In particular, one can run program P on it.
Therefore, contra my claim, the Chinese room can run program P—all that it
needs is a VBM to provide an emulation layer. Furthermore, adding a VBM only
adds another level of symbol shuffling, so it still seems likely that even with a
VBM, the person inside the room would still not be able to understand Chinese.
Therefore, program P cannot be sufficient for, or constitutive of, understanding
Chinese. Searle’s original argument goes through after all.

This objection relies on the notion of a virtual machine, and although that
notion is compelling, it is easy to take it too literally. Virtual machines are not
the machines they appear. Virtual machines present interfaces that give the
impression that a real machine is there, but they do not strictly speaking run
the program that they are given. Virtual machines are automated procedures
for turning one program into another. A VBM does the following: for each step
or small group of steps S in program P, it transforms those steps into a group
of steps S* for the Chinese room to run, and then runs S*. The VBM does not
run program P, it runs a transformation of program P. In this respect, virtual
machines are like compilers: they transform one program (the one that the user
writes) into another program (the one that the machine runs). The difference is
that compilers do the translation beforehand and all at once, virtual machines
do the translation piecewise and at runtime.

The original program and the one produced by the VBM have the same
input–output characteristics, but they will almost certainly work in different
ways. This is invariably the case when one compiles across different architec-
tures, or when a virtual machine has to adapt to the underlying architecture of
a particular machine. If the architectures of the real and the virtual machine are
significantly different, then the transformed program and the original will only
be distantly related: this can be to the extent that the instructions are different,
the order in which instructions are executed is different, extra steps inserted,
steps removed, and large-scale features of the program changed.

Therefore, even if one were to construct a VBM, and give that VBM program
P, the Chinese room would still not be running program P. The Chinese room
would be running a systematic transformation of program P: a program with
different steps, different atomic operations, and a different structure. A virtual
brain machine creates the illusion of the real brain being there—it presents the
same I/O interface to the world—but it does not literally run the program that
it is given. Adding a VBM does not get one closer to running program P on the
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Chinese room.
The VBM does not allow a Chinese room to run program P because the

original program P and its VBM-transformed counterpart P* are likely to be
very different. In the case of the Chinese room, they are likely to be different
because the architecture of the virtual machine (the human brain) the real
machine (the man and the rule-book) is so different. However, in the cases
where the architectural difference between machines is small, decisions about
program identity are not so clear. For example, if the virtual machine involves
relatively minor transformation, then programs P and P* might well be counted
as the same. How much transformation is too much? What is the cut-off point
for P and P* being the same program? The answer is unclear. In later chapters,
a finer-grained treatment of this issue is provided. An analysis is given of
the conditions under which a system performs one computation rather than
another.

1.3.2 The man with a brain objection

Objection 2. Your criticism was that the Chinese room cannot run suitably brain-like
programs, but the man inside the Chinese room has a brain, so surely he can run
brain-like programs.

This objection conflates two distinct machines that are both inside the
Chinese room. One machine is the human brain, the other is the von Neumann-
esque machine produced by the activity of the man inside the room. Call the
man inside the Chinese room the ‘clerk’. The claim of Strong AI is that a
program that runs on the first machine, the brain, constitutes understanding.
Searle’s argument is that if merely running a program is constitutive of under-
standing, then we can take the program that runs on the brain and run that
program on the other machine: we can get the clerk to work through the pro-
gram by hand. If merely running a program is sufficient for understanding,
then understanding should be produced in this second case too. But, Searle
says, it is absurd to think that the clerk could understand Chinese merely by
working through a program. So, running a program cannot be sufficient for, or
constitutive of, understanding. My point is that you cannot transfer programs
in the way that Searle suggests. The architecture of the two machines, the brain
and the von Neumann-esque machine, is just too different.

A possible confusion underlying this objection is that there are two distinct
ways in which the phrase ‘running a program’ is used in the Chinese room
argument. In some cases, ‘running a program’ means running the program dir-
ectly on the hardware of the brain. In other cases, ‘running a program’ means
the clerk working through the program by hand. Both senses of ‘running a pro-
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gram’ are legitimate. However, programs are being run on different machines
in each case. Searle requires this distinction in order to make his argument. His
crucial move in the Chinese room argument—taking the program that runs on
a brain and giving that program to the clerk—does not make sense otherwise.
The current objection conflates the two machines. Its upshot would be that
Searle’s argument, and my criticism, would be impossible to understand.

One might ask what the relationship is between the two machines inside
the Chinese room. They are clearly not independent: the von Neumann-
esque machine would cease to exist if the clerk’s brain were absent. However,
the nature of the relationship is not obvious. Fortunately, the nature of the
relationship does not matter to the current argument. All that matters is that
there are two machines inside the Chinese room. In later chapters, an account
is given of how a single physical system—such as the clerk’s body—can house
two different computers: the von Neumann-esque machine and the brain.

1.3.3 The syntax/physics objection

Objection 3. You say that the Chinese room cannot run the relevant program, but
according to Searle’s ‘syntax is not intrinsic to physics’ argument, any sufficiently
complex physical system runs any program (Searle, 1992, Ch. 9). So the Chinese room
can run any program after all.

This response would constitute a retreat for Searle, since he has claimed that
the Chinese room argument stands independently of his later syntax/physics
argument.12 However, for the purposes of this reply, I shall consider how such
a defence would work.

The conclusion of Searle’s syntax/physics argument is that any sufficiently
complex physical system runs any program. According to Searle, all that it
takes for a system to run a program is for an observer to be able to interpret
that system’s physical states in the right way. If the system is sufficiently
complex, like a Chinese room, then an observer can interpret it as running
any program she likes. My claim is that there is something about the Chinese
room, its architecture, that constrains the programs that it can run. If Searle’s
syntax/physics argument is correct, then there are no interesting constraints on
the programs that a Chinese room can run.

There are two issues to be addressed here. First, there is the issue of whether
Searle’s syntax/physics argument is correct. If Searle’s syntax/physics argument
is incorrect, then the advocate of Strong AI is under no compulsion to accept
its consequences. In subsequent chapters, I argue that Searle’s syntax/physics
argument is incorrect, or rather, that it presupposes certain forms of anti-realism

12For example, see Searle (1992), 210; Searle (1994), 548; Searle (1997), 14, 17.
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that the advocate of Strong AI need not accept. The second issue is whether
the syntax/physics argument is a good way for Searle to defend the Chinese
room argument. I believe that it is not. The syntax/physics argument is double-
edged: it cuts against the original Chinese room argument just as much as it does
against Strong AI. The syntax/physics argument cuts against the Chinese room
argument because it undermines the ability to state the Chinese room argument
and it undermines the motivation for giving the Chinese room argument.

The syntax/physics argument undermines the ability to state the Chinese
room argument because the Chinese room argument itself presupposes a de-
terminate notion of computation. Searle acknowledges this: ‘For the pur-
poses of the original [Chinese room] argument, I was simply assuming that
the syntactical characterization of the computer [assignment of computations
to physical states] was unproblematic.’ (Searle, 1992, 210). The Chinese room
argument assumes that a system runs a program. Without the assumption, it is
difficult to make sense of Searle’s talk of taking ‘the’ program that is putatively
constitutive of understanding and ‘giving’ that program to the Chinese room,
or his identification of the rule-book with the program that the Chinese room
runs.

The syntax/physics argument undermines the motivation for giving the
Chinese room argument because it renders Strong AI false from the start. One
of Searle’s most firmly entrenched background assumptions is that under-
standing is an intrinsic property of a system. A system, such as a human being,
either understands or does not understand, and this is true independently of
how observers view that system. If one were to conjoin to this assumption the
conclusion of the syntax/physics argument—that the program a system runs
is an observer-relative property—then the conclusion immediately follows that
running a program cannot be sufficient for, or constitutive of, understanding.
An observer-relative property cannot be an observer-independent property.
Strong AI is refuted without any need for the Chinese room argument. This is
a mixed blessing. One of the reasons why the Chinese room argument was so
interesting is that it shows that even if one helps oneself to a notion of determinate
computation, understanding cannot consist in the running of a particular pro-
gram. Searle grants as many assumptions as possible to Strong AI in an effort
to provide a convincing argument against Strong AI. In the revised argument
above, one of these assumptions—the determinacy of computation—has been
given up, and the overall argument is less interesting as a result.
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1.3.4 The abstraction objection

Objection 4. You say that the Chinese room cannot run the relevant program, but the
programs that a computer runs can be characterised more or less abstractly depending
on the interests of the users (Lycan, 1987, 46–47). If programs are construed abstractly
enough, then the Chinese room can run them all.

Lycan (1987) claims that there is no single program that a computer runs. His
reasoning is that there is no single correct level of program characterisation. A
computer can be characterised as running any number of programs depending
on how abstractly one wishes to treat it. For example, a chess-playing computer
can be characterised as running a program that develops knights and looks for
kingside weaknesses, or as running a program that evaluates trees of chess
moves in a certain order, or as running a program whose steps are instructions
in the programming language that the chess program was written, or as running
a program whose steps are the machine code instructions of the processor on
which the program is running.

At the most abstract level of program characterisation—developing knights
and looking for kingside weaknesses—it seems plausible that two systems with
different architectures could run the same program. At the least abstract level—
executing a set of specific machine code instructions—the possibility of running
the same program looks less likely. For Lycan, the question, ‘Do two machines
run the same program?’ does not have a single answer. Whether two machine
run the same program depends on the level of program characterisation, and
that level can vary depending on the goals and interests of the users.

First, note that even if Lycan is right, it is unclear how much this result would
help Searle. Lycan may be right that questions about program identity are not
easy to decide. There is often considerable room for debate about whether the
programs that two systems run are the same or different. However, whatever
flexibility there is, it is unlikely to be enough to support Searle’s argument.
Consider, for example, the task of moving a parallel search program, running
on a parallel machine, to a serial machine. In what sense could the two machines
run the same program? If, as seems likely, an important feature of the parallel
search program is that the search be performed in parallel, how could that
feature be preserved on a serial machine? Moving to higher levels of abstraction
just does not help. No matter how abstractly one characterises the program,
one cannot perform parallel operations on a serial machine. If the parallel
nature of the search is important, then that feature cannot be replicated on a
serial machine, no matter how abstractly the program is construed.

Here is another example. Consider two versions of Microsoft Word, one for
a λ-calculus computer and one for an ordinary PC. At what level of abstraction,
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short of I/O equivalence, could they be said to run the same program?
These are just two examples and involve relatively small differences in

architecture. The architectural differences between the Chinese room and the
human brain may be much greater. For this reason, it is unclear how appeal
to levels of abstraction can solve Searle’s problem. Given the difference in
architecture between brains and Chinese rooms, it is unclear, and prima facie
implausible, that the two systems could run the same programs no matter how
abstractly construed, short of treating programs as mere sets of I/O pairings.

It is easy to forget the degree to which programs are architecture-dependent.
Nearly all of the electronic computers with which we are familiar have more or
less the same underlying architecture. This makes moving programs between
machines relatively straightforward. It is possible to move programs while
preserving many of their key structural features. However, the straightforward
nature of these cases should not lead us to assume that moving programs to
machines with radically different architectures is similarly easy. Implementing
the same computational method on a completely different architecture may not
be possible at all.

A second problem is that it is by no means clear that Lycan’s position about
program identity is correct. Lycan’s argument presupposes that the facts about
program identity can be read off from our informal intuitions about program
identity. According to our informal intuitions, each of the levels of abstraction
that Lycan mentions is equally valid, and so there is no single answer to a
question of program identity. But it could be argued that these intuitions are
wrong. For example, Pylyshyn (1984) argues that there is a privileged level
of abstraction at which questions about program identity should be decided.
This level is the level of the system’s primitive representations and primitive
operations. Two systems with different architectures will not be able to run
the same programs unless they share the same primitive representations and
operations. For Pylyshyn, talk of more abstract levels of program organisation
may be of pragmatic value, but it should not be given any metaphysical weight
in deciding questions about program identity. Pylyshyn’s position requires
considerable defence, but it at least shows that there are alternatives to Lycan.13

Finally, consider how remarkable it would be if Searle’s claim were true.
The Church–Turing thesis is a remarkable result. It guarantees I/O equivalence
between certain classes of computational systems. The assumption that Searle
makes is stronger: it entails the Church–Turing thesis and that any sufficiently
powerful computational system could run the same programs as any other
system. If this were true, it would be truly extraordinary. The absence of any
such result from the mathematical logic should make us cautious. Consider the

13Pylyshyn (1984), 91–92. See Section 2.3.3 for more discussion of Pylyshyn’s views.
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effort that has gone into supporting the Church–Turing thesis. A huge amount
of detailed work was required to show that various computational systems are
I/O equivalent. Searle makes a stronger claim and needs extra support for that
content. It is not clear how he could have this.

1.3.5 The ‘not guilty’ objection

Objection 5. The Strong AI thesis that Searle attacked was not the thesis that you
suggest. The thesis against which he argued was either the behaviourist view:

(BH) Intelligent input–output behaviour is sufficient for, or constitutive of, under-
standing.

or, the architecture-restricted view:

(AR) Programs that can be run on a PC with a von Neumann-style architecture are
sufficient for, or constitutive of, understanding.

If the target of Searle’s argument was either (BH) or (AR) then, according to
the considerations raised so far, his argument would have succeeded. However,
it is clear that Searle intended something else. The intended target of Searle’s
argument is (AI):

(AI) Running a program is sufficient for, or constitutive of, understanding
simple Chinese stories.

It is easy to see why Searle’s target is (AI) and not (BH) or (AR).
First, it does not make sense to understand the Chinese room argument

as an argument against just (BH). The Chinese room argument would be an
overkill. An argument like Block’s intelligent lookup-table would suffice.14

Searle himself cautions against a behaviourist interpretation of his argument:

Notice that the force of the argument is not simply that different
machines can have the same input and output while operating on
different formal principles [some of which are constitutive of un-
derstanding, some of which are not]—that is not the point at all.
Rather, whatever purely formal principles you put into the com-
puter, they will not be sufficient for understanding, since a human
[in the Chinese room] will be able to follow the formal principles
without understanding anything. (Searle, 1980b, 418)

14See Block (1981).
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Searle also intends his argument as more than just a refutation of (AR). Searle
explicitly says that his claim is not just that machines with a specific architecture
(Chinese room or von Neumann) cannot understand, but that no computing
machine can understand. His argument is intended to cut across all computer
architectures: ‘My objection would hold against any program at all, qua formal
program.’ (Searle, 1980a, 452); ‘The Churchlands are correct in saying that the
original Chinese room argument was designed with traditional AI in mind but
wrong in thinking that connectionism is immune to the argument. It applies to
any computational system.’ (Searle, 1990, 22, emphasis added).

It is perhaps true that many of the original advocates of Strong AI did
not distinguish their claim from (BH) or (AR) sufficiently clearly. Those ori-
ginal advocates perhaps can, to some extent, be accused of making the same
architecture-independence fallacy as Searle. Nevertheless, regardless of ori-
ginal intentions, Searle’s position is unequivocally an attack against thesis (AI).
Although it is interesting that his argument can be reinterpreted as an attack
on (BH) and (AR), that does not affect the point that it leaves (AI) untouched.

1.3.6 The ‘same conclusion’ objection

Objection 6. It does not matter if Searle made a mistake, your conclusion about the
importance of the underlying architecture, the brain, is the same as his anyway.

The architecture-dependent view that I place at the disposal of the advocate
of Strong AI does mesh with some of Searle’s comments about the importance
of underlying biology. According to the view that I suggest, the brain runs
a particular program because it has a distinctive architecture, and it has a
distinctive architecture because of its physical makeup.15 If one were to create
an artificial system that runs the same programs as the brain, then one would
create a system that, in some important respects, is similar to a brain. Therefore,
the view I suggest and Searle’s own position both give an important role to
biology. However, the two positions are different.

The difference lies in two respects. First, the motivation for appealing
to underlying biology, and the role played by that biology, are different in
each case. Searle’s appeal to biology has been justly criticised for lack of
motivation.16 Searle seems to conclude that since computation is not enough
for understanding, there must be some other factor, and he appears to pick
biology for lack of a better candidate. On his account, it remains mysterious

15Cf. Marr (1982): ‘The algorithm depends heavily on the computational theory, of course, but
it also depends on the characteristics of the hardware in which it is to be implemented.’ (p. 337).
Remember that for the purpose of the Chinese room argument, both Searle and I are bracketing
syntax/physics worries, see Objection 3.

16For example, see Block (1980); Dennett (1980); Fodor (1980b); Pylyshyn (1980).
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what features of the underlying biology are relevant, or why biology should
be relevant at all—biology appears to play the role of a deus ex machina. On
the view that I suggest, there is a clear rationale for appealing to biology.
The physical makeup of brains determine their computational architecture,
and therefore the programs that brains can run. Biology is important because
it determines the type of hardware that supports the programs required for
understanding. Only appropriately brain-like architectures can run the kinds
of programs constitutive of understanding.

The second difference between the two views is that the claim that Searle
denies—understanding can consist in running a program—is asserted on the
competing view. Therefore, the end positions of the two views are different. It
is worth noting that even on the view that I suggest, it is still possible for the
claim of Strong AI to turn out to be false. Even if the Chinese room argument
does not prove it false, the claim that understanding can consist in running a
program may turn out to be false for independent reasons.

On the view that I suggest, appeal to biology is motivated by the general
claim that physical makeup determines computational architecture. However,
nothing has been said to justify this claim, or to explain how physical makeup
determines computational architecture. In computer science, it is often accepted
that physical makeup does determine computational architecture. But as we
shall see, it is far from clear that this claim is true. In subsequent chapters, these
two issues are dealt with in detail. I argue that physical makeup can determine
computational architecture, and I provide a detailed account of the relationship
between the two.

1.3.7 The ‘unnecessary baggage’ objection

Objection 7. The situation that you suggest—a brain-like computer running a char-
acteristic program—involves no more than reproducing the causal powers of the human
brain, which was Searle’s original suggestion. Why not drop the idea of running a
program as unnecessary baggage, and say, as Searle does, that understanding systems
should be characterised in physical terms, i.e. in terms of their causal powers?

This objection is different from Objection 6. Objection 6 claimed that the po-
sitions suggested by Searle and myself are same. The current objection admits
that the two positions are different, but claims that Searle’s position is prefer-
able to my own. The claim is that the explanatory virtues of the account that
Searle suggests are greater than those of the account that I suggest: the notion
of computation in my account is just unnecessary baggage. The disagreement
here is not about the members of the class of systems that understand—both
Searle and I agree that only a class of brain-like systems can understand. The
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disagreement is how that class should be characterised: how one should describe
what membership of that class involves. Should the class be characterised
purely in terms of physical features, as Searle suggests, or should it be char-
acterised in terms of computational features, as I suggest? Let us consider the
pros and cons of each approach.

The computational approach that I suggest has had numerous explanatory
successes. It explains a number of puzzling features of systems that understand
such as the systematicity and productivity of thought, the possibility of rational
inference, and why some aspects of the relationship between thought and
language obtain. There are deficiencies in the computational account, and
computation may not be the whole story about the mind, but it does have
something useful to say about what understanding systems have in common.

Now consider Searle’s way of characterising the class of understanding sys-
tems. It is hard to see how his account could give a satisfying explanation of
what such systems have in common. What purely physical features do under-
standing systems have in common? Acetylcholine and serotonin? Unlikely,
for other substances could have been used in their place. There is nothing
special about acetylcholine and serotonin apart from their ability to occupy
certain roles in the physiology of understanding systems. Accounts of how
systems understand, like accounts of other biological phenomena, should be
structural or functional. It is causal roles and their interrelation that explain
why a given biological system performs the function it does. This is true in
general of explanations of biological phenomena. It is true even of Searle’s
paradigmatic example of biological phenomena, photosynthesis. Look at any
scientific account of photosynthesis and one finds functionalist explanation par
excellence.17 For this reason, it is unclear why, or even how, Searle could be
hostile to functionalist accounts.

If Searle is not hostile to functionalist accounts, then it is unclear why he is
hostile to giving the causal roles involved a computational gloss. As we saw in
the previous objection, there need be nothing unbiological about such an ap-
proach. If computational accounts offer the chance of explaining the cognitive
phenomena listed above, then, provided that the notion of computation is not
shown to be otherwise problematic, why not use it? Searle’s alternative just
does not seem plausible.

The same point can be phrased as a dilemma. If Searle’s proposal is un-
derstood as a brute physical account with no functionalist component, then it
would provide a massively disjunctive and unexplanatory characterisation of
the class of understanding systems. If his account is understood as explana-
tion in terms of causal role, hence functional, it is difficult to see why he is so

17For example, see Lawlor (2001).
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hostile to giving those causal roles a computational gloss. There seems nothing
to gain and much to lose by such a move. Provided that Searle cannot show
that the notion of computation is otherwise unrespectable, there no reason why
one should not use the computational explanations of cognitive phenomena
described above.

1.3.8 The Chinese gym objection

Objection 8. If the setup inside the Chinese room cannot run brain-like programs,
why not change the setup so that it can? Once the setup is changed to reflect the
architecture of the brain, Searle’s argument against Strong AI can be run as before.

Searle (1990) proposes a modification along these lines in response to con-
nectionist criticisms. He suggests replacing the single man inside the Chinese
room with a collection of monolingual English-speaking men inside a Chinese
gym. Each man would simulate the computational behaviour of a single
neuron. The men would pass messages to each other, so that the gym as a
whole would perform a connectionist computation. Searle claims that none
of the men understand Chinese, and infers from this that there is no Chinese
understanding inside the gym. He concludes that connectionist computation
cannot be sufficient for, or constitutive of, understanding.18

Copeland (1993) correctly points out that this argument would not con-
vince a connectionist. A connectionist does not claim that individual neurons
understand, she claims that the system as a whole understands. Searle does
nothing to show that the failure of the individual men to understand Chinese
entails that the system as a whole cannot understand Chinese. Therefore ac-
cording to Copeland, this version of the Chinese room argument falls victim to
a particularly vicious form of the Systems reply.

However, the fundamental problem with this response—and the reason
why it so easily falls victim to the Systems reply—is that unlike Searle’s original
thought experiment, the key intuition behind this new thought experiment is
simply not convincing. A large part of the appeal of Searle’s original argument
was that his key intuition—that there is no Chinese understanding going on
inside the room—was plausible. The reason why it was plausible is that in the
original thought experiment it was possible to imagine oneself performing the
computation and failing to understand Chinese. One could empathise with the
system carrying out the computation. This feature is lost in the Chinese gym
scenario. It is just not possible to imagine what it is like to be a Chinese gym.
As a result, Searle’s key claim is unconvincing in a way that arguably it is not
in the original argument.

18For the argument, see Searle (1990), 22.
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Searle has not developed the Chinese gym response further, perhaps for this
reason. He now favours a different response to connectionists. This involves
the claim that the Chinese room is ‘computationally equivalent’ to connectionist
systems:

Computationally, serial and parallel systems are equivalent: any
computation that can be done in parallel can be done in serial. If
the man in the Chinese room is computationally equivalent to both,
then if he does not understand Chinese solely by virtue of doing the
computations, then neither do they. (Searle, 1990, 22)

It should be clear from Section 1.1.3 that this argument does not work.
Serial and parallel computers are computationally equivalent, but only in the
sense that they can reproduce the same I/O behaviour, i.e. compute the same
functions. Serial and parallel computers are not computationally equivalent in
the sense that they can use the same methods for computing those functions.
It is this second, illegitimate, sense of computational equivalence that Searle
needs for his argument.

1.3.9 The syntax/semantics objection

Objection 9. Searle now prefers a different argument, which he calls his ‘axiomatic’
argument, to the Chinese room argument. You have said nothing about this argument,
so why should Searle worry?

Searle says that his axiomatic argument is a generalisation, and a simplific-
ation, of the original Chinese room argument. The axiomatic argument is as
follows:

(A1) Programs are formal (syntactical)
(A2) Minds have contents (semantics)
(A3) Syntax is not sufficient for semantics

∴ Programs are not minds

Searle says the Chinese room argument is an illustration of the truth of
(A3).19 However, he also says that the Chinese room argument is not necessary,
because (A3) can be shown to be true in other ways. According to Searle, (A3)
is a conceptual truth. All that is required to see that (A3) is true is to reflect on
the nature of the relevant concepts. If one reflects on the concepts of syntax and
semantics, one can see that syntax is not sufficient for semantics.

This argument is simple but deceptive. It is deceptive because it trades on
an ambiguity in the term ‘syntax’. In logic and linguistics, the notion of syntax

19See Searle (1994), 547; Searle (1997), 11.
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is well defined. Syntax concerns the rules by which expressions in a language
qualify as well-formed. It is trivial to show that syntax is not sufficient to fix the
semantic content of expressions. Syntax, in the context of logic and linguistics,
is not sufficient for semantics.

However, this sense of syntax is not the sense at issue in Strong AI. A dif-
ferent sense of the term is meant. Unfortunately, Strong AI does not provide a
positive account of what the exact content of this other sense is. According to
Strong AI and the CTM, it is not clear either: (i) what a computation is, or (ii)
in what sense a computation is syntactic. Searle’s argument takes advantage
of this lack of clarity and substitutes their logical and linguistic equivalents.
However, lack of clarity does not mean that this notion of syntax is defective
or identical to the notion of syntax in logic and linguistics. These are claims
that the advocate of Strong AI should reject. Although it is not clear what the
exact content of the notion of syntax is, it is clear that it goes beyond the notion
of syntax in logic or linguistics in a number of ways. For example, the advoc-
ate of Strong AI typically holds that syntax has causal powers: the syntactic
properties of one computational token literally cause the occurrence of another
computational token.20 Searle, unsurprisingly, finds this incomprehensible. He
insists that syntax cannot have causal powers.21 If the concept of syntax were
that of logic and linguistics, then Searle would be right, but something different
is meant.

In the following chapters, an account of the conditions under which two
computations are the same or different is provided. In Searle’s terminology, this
is an account of syntactic identity. This account goes some way to explaining the
sense in which computation is syntactic. Among other things, this shows that
any plausible account of syntactic identity presupposes a number of semantic
notions. Syntax, in the context of the CTM, is not the strictly non-semantic
notion that Searle assumes.

1.3.10 Turing’s definition of algorithm

Objection 10. You say that the Chinese room cannot perform certain brain-like com-
putations. But Turing’s original definition of computation defined computation as what
could be achieved by a man working by himself. Therefore, the man inside the Chinese
room can run any program.

Turing’s (1937) original article characterised an algorithm as a procedure
involving a finite number of steps that could in principle be carried out by
a human unaided by any machinery save pencil and paper, and demanding

20For example, Fodor (2000), 17.
21Searle (1992), 215.
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no insight or ingenuity on the part of the human. This sounds suspiciously
like the situation inside the Chinese room. For the purposes of this objection,
make whatever changes are necessary to Searle’s setup to make it identical
to Turing’s. It now appears that my claim that there are algorithms that the
Chinese room cannot run is false. The Chinese room can, by definition, run
any algorithm. Therefore, Searle’s argument avoids my criticism. It is worth
looking at responses to this argument in detail.

Worst case scenario

What if this objection is fatal to my argument? First, note that this defence
of Searle’s argument does not challenge my claim about the architecture de-
pendence of algorithms. The argument is that the Chinese room can run any
algorithm, not because algorithms are hardware or architecture independent,
but because the architecture of Chinese room happens to be just that one that
can run any algorithm. If Searle had put any other machine inside the Chinese
room (a Turing machine, a register machine, an electronic PC with unbounded
memory), then my argument would have gone through.

Second, if this objection goes through, then it shows that the Chinese room
argument is strong in an unusual direction. It not only entails that my criticism
fails, it also entails that connectionist criticisms fail. Connectionist criticisms
claim that one can avoid Searle’s conclusion by switching to a different archi-
tecture (connectionist instead of von Neumann). My original criticism could
be understood as providing a rationale for such a switch. However, if the cur-
rent defence is correct, then all of this is wrong. Any criticism that relies on
alternative architectures cannot succeed. This is because connectionists, to the
extent they admit that they are contesting the same proposition as Searle—to
the extent that they admit that the proposition at issue is whether understand-
ing consists in the running of a particular program—and to the extent that they
accept Turing’s definition of program, have to admit that the Chinese room
can, by definition, run any program. Hence, the Chinese room can run any
program that a connectionist system can run. The advocate of connectionism
might protest that a connectionist system is in many ways unlike a Chinese
room. But this is irrelevant unless accompanied by a rejection of either the
thesis that running a program is sufficient for understanding (hence conceding
that Searle is correct), or a rejection of Turing’s definition of a program.

Third, Searle himself does not seem to be aware of this defence. Searle
makes little or no mention of the match even though it would significantly
strengthen his argument. Furthermore, the match between the two situations
is not exact, some changes need to be made to make Searle’s setup fit Turing’s.
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It would have cost Searle nothing to have made these changes in his original
article, but he did not.22

Finally, Searle’s setup with the man inside the room is commonly thought of
as motivated on other grounds, namely, the man was introduced to enable one
to empathise with the system carrying out the computation. The Chinese room
argument relies on one imagining oneself inside the room, shuffling the Chinese
symbols around and not understanding Chinese. Issues about empathy seem
largely orthogonal to those concerning the definition of an algorithm. One could
imagine a world in which algorithms were defined differently—for example,
in terms of what a group of humans could achieve, or what certain mechanical
devices could achieve—and yet the Chinese room argument would still require
a single human being in order to be convincing.

I hope that this shows that even if the current objection is fatal, my original
criticism is still of some interest. I shall now argue that this defence of Searle’s
argument fails.

Criticism of the defence

This section argues that: (1) it is not clear that Turing gave the informal defin-
ition of algorithm used by Searle’s defence; it is compatible with what Turing
wrote to hold a different view and one not conducive to Searle’s argument. (2)
On this alternative view, there are algorithms that the Chinese room cannot
run (e.g. parallel algorithms). (3) Even if one were to accept the premise of the
defence, it is not clear that it would ultimately help Searle’s argument.

(1) Turing and Church can be consistently read in a way that does not
support Searle’s defence. Turing and Church were primarily interested in
constructing a formal predicate for picking out a certain class of functions,
namely, computable functions. That class of functions can be characterised in a
number of different ways. One way is in terms of the informal definition given
above. Another way is in terms of the formal predicates introduced by Church
and Turing. But there are plenty of other ways, both formal and informal, of
picking out this class. There is no reason to take the setup described by Turing
as particularly fundamental or primary. It is just one way among many of
characterising that class. If one likes, the situation can be taken as definitive of
what functions can be computed, but it should not be taken as the definitive
word on what an algorithm is. What is special about the setup with the clerk
working by hand is that it was useful for Turing in arguing that his formalised
predicate (i.e. Turing machines) ends up capturing the same class of functions
as are captured by our informal notions of computation.

22Perhaps not quite nothing, as we shall see in the next section.



CHAPTER 1. CHINESE ROOMS AND PROGRAM PORTABILITY 28

(2) On at least some levels, it seems plausible that there are algorithms that
a human working by herself cannot run. A human working by herself can
compute any computable function, but that does not mean that she can use any
possible method to do so. There may be methods that she cannot access but
that do not happen to produce any new functions. Consider parallel search
algorithms, or data-flow algorithms, or topological algorithms, or quantum
computing algorithms, or enzymatic algorithms.23 It seems plausible that a
human being working by herself cannot run these algorithms. Humans can
run related algorithms that compute the same functions, but these are different
algorithms in each case.

One might object: Why call the two algorithms different? Why not say that
the serial and parallel algorithms are different versions of the same algorithm?
The problem with this line of argument is that it only works as a defence of Searle
if one already has a clear view on how algorithms should be individuated. What
criteria should we use to decide when two algorithms are the same or different?
One solution is to individuate algorithms extensionally, i.e. by the function they
compute. This provides a simple, clear way of individuating algorithms. But
individuating algorithms extensionally is no good for Strong AI or the CTM. It
would collapse those theories into a form of behaviourism. What is distinctive
about Strong AI and the CTM is that they care about differences between
algorithms beyond differences in their I/O behaviour.

The question then arises of what features, over and above I/O behaviour,
should count as making two algorithms the same or different. Should al-
gorithms that differ in serial–parallel structure count as different? The answer
is unclear. The reason that it is unclear is that it is unclear according to Strong
AI and CTM what it is about running a particular algorithm that is supposed to
produce understanding. Maybe serial–parallel differences are significant, no
one knows. In this sense, Strong AI is an inchoate position. It is perhaps
unsurprising that Searle is unable to refute it.

The problem can be summarised as follows. Turing’s definition of an al-
gorithm has difficulties with certain kinds of processes that we would intu-
itively like to call algorithms. For example, it has difficulties with parallel
processes. One of two approaches can be taken: (i) admit that there are al-
gorithms that a human working by herself cannot run; or (ii) say that these
processes are actually the same as algorithms that she can run. Approach (i)
concedes that Searle’s defence fails as a defence of the Chinese room argument
against my original criticism. Approach (ii) opens up a new and difficult area.
It relies on a notion of algorithm individuation. Individuation conditions for
algorithms are hard to come by. A simple approach, such as individuating

23For a discussion of enzymatic algorithms, see Barrett (2005).
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algorithms extensionally is not going to work. However, it is unclear how
to improve on it. Strong AI and CTM leave the issue entirely open. Maybe
such things as serial–parallel differences do matter. If Searle wishes to use
Turing’s definition in his defence then he had better have an acceptable notion
of algorithm individuation ready, and it is not clear how he could have this.

(3) Even if Turing’s definition can be applied in this context, it is not clear
that it would ultimately help Searle. Changes need to be made to Searle’s setup
in order to match the situation described by Turing. One of these changes is
that the rule-book, instead of containing three columns of Chinese symbols and
a rewrite rule, can now contain any instructions in English that can be followed
by the man inside the room without undue insight or ingenuity. This gives a lot
more room for manoeuvre to a critic who argues that the man inside the room
can understand Chinese. In the original thought experiment, it was intuitively
plausible that the man could not understand Chinese no matter what Chinese
characters were put in the three columns, or how complicated the rewrite rule.
But now that almost any instruction in English can be given, the situation is not
so clear. Why not give the man a Chinese–English dictionary and compositional
theory of meaning? Davidson has indicated that such a theory of meaning could
be suitably extensional and followed without undue insight, provided that one
has a pre-existing grasp of the meta-language (English in this case), and Searle
explicitly allows us to assume that this is true.24 If Searle wishes to exclude
this sort of case then he has to move away from the situation described by
Turing, and if he moves away from that situation then he opens himself up to
my original criticism.

1.4 Conclusion

The Chinese room argument fails as a general argument against Strong AI.
The advocate of Strong AI can justifiably reject the Chinese room argument
because it only applies to those programs that can be run on a Chinese room:
the programs that she thinks are constitutive of understanding are not even
considered. The reason why the Chinese room argument fails is that the Chinese
room cannot run certain programs. However, we saw that the factors that
determine which programs a system can run are far from clear. The best we
could do was argue that there are certain programs that the Chinese room
clearly cannot run, and brain-like programs are in that class. The rest of this
thesis provides a finer-grained treatment of these issues. It provides a finer-
grained account of: (1) the conditions under which two systems perform the

24Searle (1980b), 418.
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same computation, and (2) how the physical makeup of a system relates to its
computational identity.



Chapter 2

The problem generalised

This chapter generalises the problems raised in the previous chapter. This is
done in two ways. First, the focus is widened from programs to computation in
general. Second, it is shown how wider issues than the Chinese room argument
depend on the nature of computational identity. Lack of clarity about the
nature of computational identity has fueled anti-realism about computation. A
consequence of anti-realism about computation is that cognitive science would
be unable to provide a naturalistic account of the mind. Three major anti-
realist arguments are introduced: Searle’s, Putnam’s, and Kripke’s. A number
of realist responses are considered. I argue that none of these existing realist
responses is satisfactory.

2.1 Programs and computation

Not every computation involves running a program. Some computers, instead
of running a program, have the computation that they perform hard-wired.
The former kinds of machine are called ‘general purpose’, the latter are called
‘special purpose’. A general purpose computer has two kinds of input: pro-
gram and data. A special purpose computer takes only data as input. General
purpose computers are familiar to us in the form of desktop PCs. The attrac-
tion of a general purpose computer is that it can perform a variety of different
computations without requiring physical rewiring. However, there is nothing
essentially general purpose about the notion of computation. The computa-
tions that a desktop PCs performs could equally well be performed by a series
of special purpose devices (e.g. a word processor, a calculator, and so on).
Examples of special purpose computers can be found inside modern cars, aero-
planes, and household appliances. These devices contain integrated circuits
(‘chips’) that compute functions, but (generally) lack a programming input.

31
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The computations that such devices perform can only be modified by physical
rewiring. Another example of a special purpose computer is an desktop cal-
culator. Most desktop calculators cannot be reprogrammed to use, say, Polish
notation instead of infix notation, or to play chess instead of adding numbers.
One is stuck with the computational design that has been hard-wired.

In the previous chapter, the discussion was phrased primarily in terms of
general purpose computers. This was partly motivated by the way in which
Searle phrased his argument, and partly by our greater degree of familiarity
with such machines. However, nothing in the argument depended on general
purpose computers. The points raised in Chapter 1 apply equally to special
purpose and general purpose computation. For both special and general pur-
pose computation, it is unclear: (i) under what condition two systems perform
the same computation, and (ii) how the physical makeup of a system affects its
computational identity.

I shall use the general term computation to include both special purpose and
general purpose computation. In what follows, the discussion will be carried
out in terms of this more general notion. Therefore, talk of running a program,
which is specific to general purpose computers, will be eschewed in favour of
performing a computation, which applies to both.

As a side point, it not obvious whether the CTM should say that the human
brain is a special purpose or a general purpose computer. Either option is
conceivable. It is conceivable that the computations that the brain performs
can be modified by providing it with a special kind of programming input. It
is also conceivable that the brain contains dedicated and non-programmable
devices whose computation can only be changed by physical rewiring.1 The
CTM is, at least from the standpoint of our current knowledge, neutral between
these two options. It is therefore misleading to characterise the CTM by the
slogan ‘the mind is to the brain as program is to hardware’. This is for two
reasons. First, the hardware/program distinction only makes sense for general
purpose computers, and as we have said, the CTM is not committed to the brain
being a general purpose computer. Second, even if the brain is general purpose
computer, there seems no reason to think that the mind should be its program.
Being a general purpose computer means that the computation performed can
be modified by providing a special kind of input. There seems no reason why
the CTM should be committed to the claim that this special input to the brain
is the mind.

1‘Programmable’ is restricted here to mean that the function computed can be changed by
providing a different input. This does not include, for example, the sense in which our genes
‘program’ for our brain.
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2.2 The threat of anti-realism

The nature of computational identity and the relationship between computa-
tional identity and the physical world has wider implications than just Searle’s
Chinese room argument. Searle (1992), Putnam (1988), and Kripke (1982) have
argued that consideration of these notions shows that we should be anti-realists
about computation. According to them, computation, including those compu-
tations performed by the brain, are not objective features of the world, but a
reflection of our interests and values as interpreting agents. This anti-realism
has serious consequences for cognitive science’s ambitions to provide an ob-
jective account of the mind.

I would like realism and anti-realism to be understood in this context in
terms of truthmakers. If one is a realist about a claim X, then one believes
that the facts that make that make X true are mind-independent. If one is an
anti-realist about a claim Y, then one believes that the facts that make Y true
are mind-dependent. Suppose that one is a realist about certain claims about
electrons. One might think that the facts that make the claims ‘electrons exist’
and ‘an electron has a charge −1.602 × 10−19 C’ true are mind-independent. A
realist does not claim that the meaning of these claims is mind-independent.
She can admit that the meaning of these claims, like the meaning of any claim
in natural language, is mind-dependent. The distinctive claim that a realist
makes is that once the semantic content of the claims has been fixed, then the facts
that make that semantic content true or false are mind-independent. In the case
of electrons, this means that once the semantic content of ‘electrons exist’ and
‘an electron has a charge −1.602× 10−19 C’ has been fixed, then it does not matter
what beliefs, interests, and values we have, the propositions expressed are true or
false independently of us. In contrast, the claim ‘a starry night sky is beautiful’,
if true at all, seems to be made true in a different kind of way. Conceivably, if
human beings did not have particular beliefs, interests, and values, then this
claim would be false instead of true. The claim depends, even after its meaning
has been settled, on human beliefs, interests, and values. The truthmakers of
the claim are mind-dependent.2

It seems plausible that we should be realists about some areas of discourse
and anti-realist about others. Searle, Putnam, and Kripke argue that we cannot
be realists about computation talk. According to them, computation cannot be
a mind-independent feature of the world. Before considering their arguments,
let us consider what consequences this conclusion would have for cognitive
science.

2For general discussion of the notion of truthmaking, see Armstrong (2004); Fox (1987); Mulligan
et al. (1984); Restall (1996).
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Cognitive science explains how cognitive processes work in terms of com-
putation. According to cognitive science, some cognitive processes literally are
computations. What is the point of explaining cognition in terms of computa-
tion? In part, such explanations provide useful knowledge for manipulating
cognitive processes. But the main motivation for such theories is to provide
a naturalistic account of cognitive processes. Advocates of cognitive science
claim that the distinctive breakthrough of their discipline is that it can nat-
uralise the mind. Instead of explaining mental phenomena in terms of other
mental phenomena—which we have done for millennia—we can explain men-
tal phenomena in terms of objective features of the physical world, namely,
computations performed by the brain.3

Let us consider three consequences, for cognitive science, of anti-realism
about computation.

First, if anti-realism about computation is correct, then cognitive science has
to give up its claim to naturalise the mind. The central notion by which cognit-
ive science explains the mind—computation—turns out, not to be an objective
feature of the world, but to be a reflection of our own minds. Therefore, instead
of explaining the mind in terms of objective features of the world, cognitive
science explains the mind in terms of, inter alia, other mental states. Cognitive
science does not explain mentality in non-mental terms, it presupposes mentality
in order to explain how mental life is possible. In this respect, cognitive science
is no different from many other, less respected, forms of psychological explana-
tion, such as folk psychology or psychological explanation in novels. Cognitive
science has to withdraw the claim that originally made it so interesting: its claim
to naturalise the mind.

Second, if anti-realism about computation is correct, then cognitive science
cannot explain an important class of mental processes. According to anti-
realism about computation, some mental processes are partially constitutive
of a system performing a computation. Call these the ‘interpretative’ mental
processes. If cognitive science aims to give an account of interpretative men-
tal processes, then it cannot do so by appeal to the notion of computation.
The reason is that what it is to perform a computation is, inter alia, that these
interpretative processes obtain. A cognitive science theory that explained inter-
pretative processes in terms of computation would, illegitimately, be appealing
to the very processes it was trying to explain: its explanans would contain its
explanadum. Cognitive science explanations, if they are to avoid circularity,
must therefore be restricted to non-interpretative mental processes. However,

3For example: ‘Rationality is a normative property; that is, its one that a mental process ought
to have. This is the first time that there has ever been a remotely plausible mechanical theory of
the causal powers of a normative property. The first time ever.’ (Fodor, 2000, 19).
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interpretative processes play an important part of our mental life beyond the
role described above, and prima facie seem like good candidates for cognitive
science explanation.

Third, a lesson that one might draw from anti-realism about computation
is that cognitive science is not on a par with the other sciences. Intuitively,
one might think that physics, chemistry, and physiology describe the world
in a mind-independent way—if there were no minds, then the facts about
physics, chemistry, and physiology would still largely be the same. According
to the anti-realist, cognitive science is different. If there were no minds, then
there would be no facts about computation. Facts about systems performing
computations depend, for their very existence, on agents to interpret them. If,
as seems reasonable, one thinks that a science should aim to describe the world
in a mind-independent way, then this means that cognitive science cannot be a
science.4

Two points should be noted.
First, although anti-realism about computation would damage the ambi-

tions of cognitive science, it by no means entails that cognitive science is worth-
less. An explanation of mental phenomena in mental terms is still useful. For
example, explanations in folk psychology are useful. The careful and con-
trolled nature of studies in cognitive science would enable it to go beyond
folk psychology to explain how our mental states are related in non-obvious
ways. Anti-realism about computation does not entail that cognitive science is
worthless, it just entails that cognitive science cannot deliver what we originally
thought: a naturalistic account of the mind.

Second, one might wonder whether anti-realism about computation only
causes trouble for someone who already has a general realist outlook. If one is
a global anti-realist—an anti-realist about all claims—then perhaps it does not
matter if anti-realism about computation is true. However, this is not the case. A
global anti-realist would not be affected by the first and the third consequences
mentioned above, but she would be affected by the second consequence. In
other words, a global anti-realist would face the circularity problem that certain
cognitive processes cannot be explained in terms of computation because those
processes are constitutive of what it is to perform a computation. Therefore,
anti-realism about computation has consequences even for a global anti-realist.

4Searle argues for this: ‘The aim of natural science is to discover and characterize features that
are intrinsic to the natural world. By its own definitions of computation and cognition, there is no
way that computational cognitive science could ever be a natural science, because computation is
not an intrinsic [mind-independent] feature of the world.’ (Searle, 1992, 212).
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Two senses of mind-dependence

A trivial and substantive sense of mind-dependence should be distinguished
in this context. There is a trivial sense in which the facts that make the claims
of cognitive science true are mind-dependent: they are about minds. This is
clearly not the sense of mind-dependence at issue in the realist/anti-realist dis-
pute. Both the realist and the anti-realist agree that the claims of cognitive sci-
ence are mind-dependent in this respect. What they disagree about is whether
such claims are mind-dependent in a further respect: namely, whether the
general concepts under which cognitive science explains the mind make inelim-
inable reference to mental states. Cognitive science claims that certain mental
processes are computations. If the notion of computation makes ineliminable
reference to mental states, then this kind of explanation is not explanation in
non-mental terms. However, if, as the realist claims, the notion of computation
does not make reference to mental states—if it refers to general features of the
non-mental world—then this kind of explanation is explanation in non-mental
terms, and cognitive science can justify its claim to provide a naturalistic ac-
count of the mind. It is concerning this question of mind-dependence that the
realist/anti-realist dispute lies.

Another way of drawing the distinction—a way that is helpful to consider
in many cases—is to ask whose mental states are the truthmakers of the claims
of cognitive science. Typically in cognitive science, there is an experimenter
(the cognitive scientist) and an experimental subject (the person under exam-
ination). Both the realist and anti-realist agree that the mental states of subject
are part of the truthmakers for cognitive science claims about that subject.
However, the anti-realist claims that the experimenter’s mental states are also
part of the truthmakers for such claims. According to the anti-realist, the truth
of a computational claim depends on the experimenter having certain beliefs,
interests, and values. In contrast, the realist claims that whether the subject
performs a computation is independent of the beliefs, interests, and values of
the experimenter. It does not matter what mental states the experimenter has,
or whether an experimenter exists at all, it is simply an independent matter of
fact whether the experimental subject performs a certain computation or not.
Unfortunately, this way of drawing the distinction, although helpful in many
cases, does not work in general. This is because it is possible for the subject
to be her own experimenter. In this case, there is no easy way of drawing a
distinction between the mental states of the subject and the mental states of the
experimenter. This is why I wish to draw the distinction in the terms discussed
above.

I identified the relevant sense of mind-dependence above with whether
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the general concepts make ineliminable reference to mental states. However,
I wish to refine this way of phrasing the distinction. It is not as a question
about reference that I would like to phrase the dispute, but as a question about
truthmakers. Talk of the reference in the context of general concepts is unclear.
It is better to rephrase the issue in terms of truthmakers. The sense of mind-
dependence can be rephrased in terms of truthmakers as follows. Cognitive
science claims that certain mental processes are computations. If one is a realist
about computation, then one thinks that the truthmakers of computation talk
are mind-independent—they do not involve mental states. If one is an anti-
realist about computation, then one thinks that the truthmakers of computation
talk are mind-dependent—they do involve mental states. If the truthmakers
of computation talk are ineliminably mind-dependent, then an explanation of
mental states in terms of computation is not an explanation in non-mental
terms, and therefore cognitive science cannot justify its claim to naturalise the
mind. In contrast, if the truthmakers of computation talk are ineliminably mind-
independent, then an explanation of mental states in terms of computation is
an explanation in non-mental terms, and cognitive science can justify its claim
to naturalise the mind. It is in these terms—in terms of the truthmakers of
computation talk—that the question of mind-dependence should be phrased.

Let us now consider the arguments that aim to show that realism about com-
putation is impossible.

2.2.1 Searle’s argument

Searle (1992) gives two arguments against realism about computation.5

Syntax is not intrinsic to physics

Searle (1992)’s first argument is a reductio ad absurdum of realism about compu-
tation. He claims that any plausible form of realism about computation entails
that all physical systems perform all computations. This kind of realism about
computation could not be tolerated by cognitive science. Cognitive science
claims that cognitive processes are distinctive computations performed by the
brain. If all systems perform all computations, then there are no distinctive

5Searle provides two further arguments in Searle (1992): ‘Syntax has no causal powers’ and
‘The brain does not do information processing’. These arguments will not be addressed here.
Searle’s claim about syntax and causal powers seems to result from conflating the notion of syntax
in linguistics with the notion in implementation of computation. His second argument, the claim
that the brain does not perform information processing, does not seem essential to the CTM. The
content of that claim, unless taken in the sense of mathematical information theory, is obscure, and
an advocate of the CTM need not hold it in order to say that the brain performs computations.
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computations performed by the brain. The brain, like everything else, per-
forms all computations. Therefore, computational theories cannot explain why
humans have certain cognitive processes rather than others, or why they have
cognitive processes at all.

Searle’s argument is as follows. Suppose that the performance of a com-
putation is a matter of a system having a certain pattern of mind-independent
activity. Now imagine a desktop computer running Microsoft Word. There
are many patterns of activity inside the computer: patterns of electrical activ-
ity, thermal activity, vibrational activity, and so on. According to our realist
assumption, the computer runs Microsoft Word because one of these patterns
of activity—the pattern of electrical activity—has a particular structure. If one
were to construct another system, perhaps made out of different materials, that
had a pattern of activity with the same structure, then it too would run Microsoft
Word. Now consider a brick wall. A brick wall is teeming with microscopic
activity: vibrational activity, thermal activity, atoms changing state, subatomic
particles flying around, and so on. In fact, there is so much activity inside a
typical wall that there is almost certain to be at least one pattern of activity
with the same structure as that inside the computer. Therefore, according to
our realist notion of computation, the wall is also running Microsoft Word.
The same point applies, mutatis mutandis, to other physical systems. Therefore,
(almost) every physical system performs every computation.

Of course, this cannot be true—the conclusion is absurd. However, it is not
easy is to explain what has gone wrong without giving up realist principles.
For example, a natural reaction is to say that the wall does not run Microsoft
Word because walls cannot be used as word processors—it does us, as human
users, no good that there is a pattern of activity inside the wall that has the
same structure as Microsoft Word, because we do not know where that pattern
is, or how to use it. This response rules out the absurd conclusion, but at
the cost of giving up realism about computation. It makes the performance
of a computation dependent on human interests and values. Searle claims
this kind of response, which introduces anti-realist factors, is the only way out
for computation talk. Unadulterated realism about computation has absurd
consequences.6

6Searle sometimes phrases his argument in two different ways. (1) He sometimes draws atten-
tion to the intuition that we can choose to interpret a physical system like the wall as performing
any computation we like. This is misleading for two reasons. First, it would do nothing to move
a realist who claims that there is a fact of the matter about which computation a system performs
and we might get this fact right or wrong in our choices. Second, it is not reasonable to assume
that we can choose to interpret the wall in any way we like, since even on an anti-realist view, the
claim that we have absolute freedom to choose our own values and interests is implausible. (2)
Searle sometimes presents his argument as the claim that computation is observer-relative: com-
putations are assigned to the physics not discovered within the physics. This however, merely states
the anti-realist position, it does not provide any argument for it.



CHAPTER 2. THE PROBLEM GENERALISED 39

The homunculus fallacy

A potential weakness in Searle’s reductio ad absurdum argument is that it leaves
open the possibility that the realist can develop a more sophisticated account
of computation that avoids Searle’s conclusion. For example, the realist might
claim that only certain patterns of activity, such as counterfactual-supporting
patterns of activity, count as computation.7 Searle acknowledges this possibility
and argues that realism about computation fails for a deeper reason.8 This
reason in expressed in Searle’s second argument.

Searle’s second argument against realism about computation revolves around
the claim that computation requires an interpreter. When we speak of com-
putation without an interpreter—for example, when we say that computations
are performed by our brains without us being aware of them—we commit a
fallacy. We implicitly assume the existence of an interpreting homunculus.

An example of a cognitive process that has been claimed to be a computation
is the recognition of simple shapes by the visual system. Marr (1982) describes
a series of computations that transform a two-dimensional array of activity on
the retina into a three-dimensional description of a scene. However, as Searle
points out, the inputs and outputs of a computation require interpretation. A
component of the visual system only performs, say, line recognition, if its input
is interpreted as visual data, and its output as judgements of lines. Who inter-
prets the inputs and outputs of cognitive processes? Where is the interpreting
agent?

In the case of electronic computers, human users are the interpreting agents
in question. We, as users of a computer, interpret its input and output as,
for example, a string of English text or a picture. However, the same cannot
be true of the computations posited by cognitive science. The computations
posited by cognitive science can take place without our awareness. No human
need be aware that they are performing a computation when they, say, parse a
grammatical sentence. So who interprets their input and output? We appear
to be forced to invoke a homunculus who interprets various parts of the brain
as performing computations.

A number of philosophers argue that this is not a problem, since the hom-

7Block (1995) makes this suggestion.
8‘I do not think that the problem of universal realizability is a serious one. I think it is possible to

block the result of universal realizability by tightening up our definition of computation. Certainly
we ought to respect the fact that programmers and engineers regard it as a quirk of Turing’s original
definitions and not as a real feature of computation. Unpublished works by Brain Smith, Vinod
Goel, and John Batali all suggest that a more realistic definition of computation will emphasize
such features as the causal relations among program states, programmability and controllability
of the mechanism, and situatedness in the real world. All these will produce the result that the
pattern is not enough . . . But these further restrictions on the definition of computation are no help
in the present discussion because the really deep problem is that syntax is essentially an observer-relative
notion.’ (Searle, 1992, 209, emphasis in original).
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unculus in question can be ‘discharged’.9 Computational operations can be
analysed into progressively simpler units, until we reach simple ‘yes-no’, ‘1-0’
patterns. Therefore, a high-level homunculus can be progressively replaced by
stupider homunculi, until we reach a bunch of homunculi who just say ‘zero,
one, zero, one’. However, Searle argues that replacement by stupid homunculi
does us no good. Even at the level of simple ‘1-0’ patterns, we still need an
interpreting agent to interpret ‘zero’ as 0, and ‘one’ as 1. The homunculus
fallacy is with us after all.

2.2.2 Putnam’s argument

The second challenge to realism about computation comes from Putnam (1988).
Putnam’s main concern is to show that propositional attitudes, such as believing
that snow is white cannot be computational states of the human brain.10 Accord-
ing to Putnam, propositional attitudes cannot be computational states of the
human brain because the content of propositional attitudes is not reducible
to computational or physical properties and relations. There are a number of
sophisticated arguments that Putnam gives to support this claim.11 However,
it is important to see that even if Putnam’s claim is correct, that claim does not
have a direct bearing on this thesis. This thesis is concerned with cognitive
processes, not propositional attitudes. It is possible for cognitive processes to
be computational even if, as Putnam argues, propositional attitudes are not.
There are at least two ways in which this could happen.

First, propositional attitudes could participate in computations, even if they
get their nature and identity in non-computational ways. Propositional atti-
tudes may get their identity from their causal relations to the outside world
(although Putnam independently denies this), or from the interpreting atti-
tudes of other speakers. This does not exclude those propositional attitudes
from participating in computations. Furthermore, there is no reason to think
that computational explanations cannot be given of topic-neutral features of
our inferences even if the content of propositional attitudes cannot be similarly
explained. Putnam’s target is not the claim that the brain performs compu-
tations, or the claim that the brain performs computations with propositional
attitudes. His target is the claim that the computations performed by the brain

9For example, see Block (1995); Dennett (1978a); Haugeland (1981).
10For a defence of the opposite position, see the earlier works of Putnam (1975b), Chs. 14, 18–21.
11These include: (i) that a significant part of content lies outside the head; (ii) content presupposes

human rationality and interpretative practice, and this cannot be captured by a single computational
relation; (iii) it is intuitively plausible that two systems can share the same propositional content
and yet be in distinct computational states; and (iv) a system would need to both know all the
physical facts about the world, and to survey all possible rationalities, near-rationalities, not-too-
far-from-rationalities-to-be-still-intelligible, in order to work out if two computational states have
the same content. See Putnam (1988), Chs. 2, 3, 5, 6.
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determine the content of its propositional attitudes. Strictly speaking, his argument
is not against the CTM per se, but against an application of the CTM to provide
an account of content.

Second, the cognitive processes explained by the CTM need not involve pro-
positional attitudes at all. Theories in cognitive science often concern relatively
modest cognitive process, such as the detection of edges by our visual cor-
tex or syntax parsing. These cognitive processes need not involve full-blown
propositional attitudes. Therefore, one can claim that certain cognitive pro-
cesses are computational without making any claim at all about propositional
attitudes. On a similar point, Fodor (1983) explicitly restricts computational
theories of the mind to peripheral parts of the cognitive system; parts that are,
not coincidently, prior to the construction of full-blown propositional attitudes.

However, in the course of his argument, Putnam establishes a result that
does have a bearing on this thesis. This result is that every ordinary open
physical system implements every abstract finite state automaton.12 Putnam
states the result for finite state automata, but he claims that a similar result
holds for any other computational formalism. Therefore, every ordinary open
physical system performs every computation. As was argued above, if this
were true, then it would be a reductio ad absurdum of the notion of computation.

Putnam’s theorem

The proof of Putnam’s theorem is as follows. Pick any open physical system, S.
An open physical system is system that is not shielded from outside influences.
Open systems are vulnerable to the influence of naturally occurring clocks.
It seems reasonable to suppose that such clocks exist, and that their effects
(perhaps gravitational or electromagnetic) propagate inside and affect open
systems. Assume that the changes they induce inside the system are of a
non-cyclical nature. Therefore, we can assume that the open system S is in
different states at different times. (Putnam calls this the ‘Principle of Noncyclical
Behaviour’).

It can be shown that open system S implements all finite state automata.
For the sake of simplicity, pick a finite state automaton that has two states, A
and B, and that undergoes the following state transitions: ABABABA. Suppose
that the system is observed for a 7-minute interval from 12:00 to 12:07. It can
be shown that system S implements the finite state automaton during this time
period.

Let µ(S, t) denote the maximal physical state of S at time t. The parameter
µ(S, t) is an entire characterisation of the physical state of S at t. In classical

12See Putnam (1988), Appendix.
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physics, µ(S, t) is the value of all the field parameters inside the boundary of
S at time t. We assumed above that system S is in a different physical state
at different times. Therefore, the value of µ(S, t) is different for different t. If
one were to plot all the possible values of µ(S, t), one would produce a ‘phase
space’ for S. The phase space is the space of all possible states of S. As time
increases, S traces out a path in its phase space. Regions of S’s phase space pick
out ranges of possible states that S could have.

Divide up the time period between 12:00 and 12:07 into seven 1-minute
intervals. Let t1, t2, . . . , t7 denote the beginning of each 1-minute interval, t1 =

12:00, t2 = 12:01, . . . , t7 = 12:06, and let t8 denote the end of the entire 7-minute
period, t8 = 12:07. For each of the time intervals, define the ‘interval state’ si to
be the region in phase space that contains all the states µ(S, t) for ti ≤ t < ti+1,
i = 1, . . . , 7. In other words, an interval state si is the region in phase space
occupied by the system during a 1-minute interval from ti to ti+1. We will say
that the system is in si at time t just in case µ(S, t) is contained in the region of
phase space si. Therefore, system S is in s1 from t1 to t2, in s2 from t2 to t3, . . . ,
and in s7 from t7 to t8.

Now define A = s1 ∨ s3 ∨ s5 ∨ s7, and B = s2 ∨ s4 ∨ s6. System S is in state
A from t1 to t2, from t3 to t4, from t5 to t6, and from t7 to t8, and in state B
at all other times between t1 and t8. Therefore, the system is in the following
sequence of states during the 7-minute period: ABABABA. The disjointness of
each of these states is guaranteed by the Principle of Noncyclical Behaviour.
Therefore, the system satisfies the sequence of state transitions specified by
the finite state automaton, with each machine state implemented by a distinct
range of physical states.

It remains to be shown is that each implemented state A or B ‘brings about’
its subsequent state. Putnam argues that this can be shown by demonstrating
that each state A or B ‘causes’ the subsequent state. The notion of causation
with which Putnam operates is as that a state X causes a state Y, just in case a
mathematically omniscient being (a being who knew all the laws of physics and
could calculate all their consequences) could predict that the system would go
into state Y at the relevant time given only the information that the system was
in state X and the boundary conditions of the system. More precisely, a state
X of a system causes that system to go into state Y just in case any maximal
state of the system which lies in the region of phase space corresponding to
state X, and which is compatible with the boundary conditions at the moment
of transition, and which is compatible with physical law, will be followed by a
state which lies in the region of phase space corresponding to state Y.

It can be shown that this condition is satisfied by system S. Consider a
mathematically omniscient being who knows that the system is in state A at
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time t for t1 ≤ t < t2, and who also knows the boundary conditions Bt at t.
The omniscient being can deduce from this that the only possible state for the
system to be in at time t is µ(S, t). The deduction requires the use of a lemma
that is discussed and justified in Putnam (1988).13 Let us assume, for the sake of
argument, that this lemma is correct. Then, the result is established. Given the
information about the boundary conditions at t, a mathematically omniscient
being can work out that the system is in µ(S, t) state. If this can be done, then
the being can determine, given boundary conditions at subsequent times and
the laws of nature, how system S evolves in the whole time interval. Therefore,
the A and B states of system S satisfy the above condition for causation.

The technique of proof above is not specific to any particular finite state auto-
maton. The same reasoning can show that system S implements any finite
state automaton one pleases. Therefore, we can conclude there are no distinctive
computations that a physical system performs. Physical systems, considered
just in terms of their physical parameters, perform all computations. If the
mind-independent facts do not outrun the physical facts (which seems plaus-
ible), then this means that a mind-independent notion of computation is not
available. In terms of the mind-independent facts, all computational claims are
trivially true.14

2.2.3 Kripke’s argument

Kripke (1982) presents a paradox concerning rule-following and meaning.
Kripke describes a sceptic who argues that no facts about past history de-
termine the correct way in which to continue to follow a rule. According to
the sceptic, any future course of action is compatible with past stipulations or
intentions. Meaning requires accord or discord with past intentions concerning
words. Therefore, the sceptic argues, there are no facts about meaning. The
same argument applies to mental content. The paradoxical conclusion is that
there are no facts about meaning or mental content.

13Briefly, the lemma states that a system S cannot have the same internal state µ at times t and
t′ but different boundary conditions. The reasoning relies on what Putnam calls the ‘Principle of
Continuity’ which states that the electromagnetic and gravitational fields are continuous (except
possibly at a finite or denumerably infinite set of points). Putnam’s justification of the lemma is
as follows. If a system S is exposed to signals from a clock C, then those signals can be thought
of as forming an ‘image’ of C on the surface of S. For the same reason, there are also ‘images’ of
C inside the boundary of S. The ‘image’ of C at t′ = 12 might be thought of as showing a ‘hand at
the 12 position’, while the ‘image’ of C at t = 11 might be thought of as showing a ‘hand at the 11
position’. Therefore, at t′ = 12, the system will have a ‘12 image’ on its boundary and an ‘11 image’
an arbitrarily small distance inside its boundary. This means that the fields that constitute the
‘images’ would have a discontinuity along a continuous area, violating the Principle of Continuity.

14Note that the restriction to open physical systems is not a serious one; all physical systems that
we are likely to consider are open.
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As part of the argument, Kripke considers the case of machine rule-following.15

Computation and rule-following are closely connected: in order for a machine
to perform a computation that machine must follow a rule. Kripke consider
what fact about a machine determines that it follows one rule, i.e. performs one
computation, rather than another. He argues that there are no mind-independent
facts of the matter. The computation that a machine performs, if it performs a
computation at all, depends on the intentions of its designer or the interests of
its users. Computation is a mind-dependent matter. Kripke goes on to argue
that there are no facts about the intentions of designers or interests of users
either. Therefore, there are no facts about rule-following, either for humans or
computers. Here, however, we will not follow Kripke’s argument. We shall
only consider the first step in the argument: the claim that computation is mind-
dependent. The further aspects of Kripke’s paradox will not be considered. It
is generally assumed that there must be some answer to the sceptic on these
points. In any case, the problem has been extensively addressed elsewhere.16

Kripke gives three arguments for the mind-dependence of computation.

Kripke’s first argument

Kripke’s first argument is that the input and output of a machine require in-
terpretation. A machine is a physical system, and in order for that machine
to follow a particular rule, a ‘code’ or ‘machine language’ has to be used to
interpret its physical states. For example, consider a machine that appears to
compute the plus function. This machine, by itself, is no more than a physical
system with a variety of physical states. It computes the plus function only
if one interprets some of its physical states as codes for numbers. The coding
system is not something that is determined by the machine. Instead, the cod-
ing system is chosen by an interpreting agent who wishes to use the machine
for certain purposes. A coding system is necessary for a machine to perform
computation. Therefore, there can be no facts about the computation a machine
performs independent of interpreting agents.

Kripke’s second argument

Kripke’s second argument is based on an observation about the finite nature
of real-world machines. We often treat a real-world machine as performing a
computation with an infinite domain. For example, we might say that a machine
computes the plus function. The machine itself cannot be the truthmaker
for this computation claim. Real-world machines are finite; they only accept

15Kripke (1982), 32–37, especially n. 24.
16For example, see Miller and Wright (2002) and references.
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finitely many numbers as input, and only yield finitely many numbers as
output. An indefinite number of computational behaviours extend the actual
finite behaviour of any given real-world machine into an infinite domain. The
attribution of one of these behaviours, such as the plus function, to a machine
cannot be due to any fact about that machine. It must be due to other factors.
Kripke says that these other factors involve the intentions of the designers and
the interests of the users. Computation, at least on infinite domains, must be
mind-dependent.

Kripke’s third argument

Kripke’s third argument is that we cannot make sense of malfunction without
interpreting agents. Real-world machines malfunction. Wires melt and gears
slip, and this causes machines to give incorrect answers. What makes a wire
melting, or a gear slipping, a malfunction? The physical nature of the ma-
chine alone cannot be responsible. A designer might exploit the fact that wires
melt or gears slip to achieve an intended behaviour. A machine that was
‘malfunctioning’ for me would be performing perfectly well for him. There
seem no mind-independent facts of the matter about who is right in this
case. The machine, considered as an isolated object, behaves as it behaves;
whether it is malfunctioning or not depends on the intentions of designers and
users. If mind-independent malfunctioning does not make sense, then mind-
independent correct functioning does not make sense either. This distinction—
between correct functioning and malfunctioning—seems essential to the idea
of a machine performing a distinctive computation. Therefore, performing a
distinctive computation cannot be a mind-independent matter.

2.3 Existing solutions

This section provides a survey of existing realist answers to the following
questions: (1) what makes a system perform one computation rather than
another; and (2) what makes a system perform any computation at all. It is
worth noting that the anti-realist has an easy answer to both these questions.
She can say that a system performs one computation rather than another just
in case we find it useful, or we choose, to interpret it as such. Similarly, she can
say that a system performs any computation at all just in case we find it useful,
or we choose, to interpret it as performing a computation. She is not committed
to every system performing every computation, because we generally do not
choose, or find it useful, to interpret brick walls as performing computations.
Let us see whether a realist can provide similar answers.
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(Note that the realist responses discussed in Sections 2.3.1 to 2.3.3 provide
an answer to the question of computational identity—question (1) above. The
realist responses discussed in Sections 2.3.4 to 2.3.6 provide an answer to the
question of what makes a system perform any computation at all—question
(2) above. None of the responses below provides an answer to both questions,
unlike the view put forward later in this thesis.)

2.3.1 Syntactic approaches

A common way of individuating computations is to appeal to purely syntactic
features of their specification. Within a given architecture, it seems possible to
individuate computations by comparing the syntactic form of the specification
of one computation with another. One might say that if two computations can
be specified using the same symbols in the same order, then the two computa-
tions are the same. However, although this way of individuating computations
might work within a single architecture, it does not work in the general case.
In the context of the CTM, we need a cross-architecture notion of computation
individuation: we need to be able to say when, for example, a human and a
computer perform the same computation. In the cross-architecture case, there
is no guarantee that the syntactic symbols in the specification mean the same
thing. The symbol ‘ADD’ might mean add on one architecture, and divide on
another. Therefore, one cannot compare computations just by comparing the
syntactic properties of their specification. (It is not obvious that this strategy
works even in the intra-architecture case. Two specifications of a computa-
tion can differ in their syntactic symbols, for example, they might differ by a
comment character, without differing in the way in which they work. Two
computations may also work in the same way, but be described, even within a
single architecture, using different symbols.)

Even if one could individuate computations in terms of their syntactic spe-
cification, that does not settle the issue of realism about computation. One
still has to explain how the symbols of an computation specification relate to
the real-world machine that implements the computation. The syntactic ap-
proach to computational identity, by itself, is silent about the nature of this
implementation relation.

2.3.2 Z and specification languages

Another way to individuate computations is by appeal to a specification lan-
guage. Specifications languages are designed to give an unambiguous state-
ment of what a computation does in formal/mathematical terms. One popular
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specification language, Z, is based on Zermelo–Fraenkel set theory with first
order predicate logic. One might say that two computations are the same just
in case they satisfy the same specification in Z. Unfortunately, this strategy for
individuating computations does not work either.

Specification languages like Z are designed to specify the I/O behaviour
of programs, not to distinguish different ways of achieving that I/O. A spe-
cification in Z is a specification of what a system does, not a way in which
it achieves its behaviour.17 The purpose of Z is to enable formal reasoning
about the I/O behaviour of a program, and in particular, to provide correctness
proofs. A correctness proof is a demonstration that a program satisfies a cer-
tain Z specification and consequently that it must have a certain I/O behaviour.
Correctness proofs are important, for example, they are important in safety
and security-critical systems. However, correctness proofs do not address our
question of the conditions under which two computations are the same. Two
systems can satisfy the same Z specification, but still work in different ways.
The same holds true of other formal specification languages.

Z does not secure realism about computation either. A Z specification con-
sists of mathematical formulae. Such a specification, at best, makes statements
about mathematical objects. It does not provide an account of how these ab-
stract objects relate to the nuts and bolts of real-world machines. Therefore, a
Z specification, by itself, does not establish realism about computation.

2.3.3 Canonical architectures

Another way of individuating computations is to appeal to a canonical archi-
tecture. The idea here is as follows. Suppose one wishes to determine whether
two computations c1 and c2 are identical. One transforms them into two equi-
valent computations c1

′ and c2
′ that can be run on a canonical architecture, say,

a universal Turing machine. One then compares the syntactic specifications of
c1
′ and c2

′ to see whether they are the same or not. If the syntactic specifica-
tions of c1

′ and c2
′ are the same, then the original computations c1 and c2 are

the same, if not, then c1 and c2 are different. Comparing the syntactic specific-
ations of c1

′ and c2
′ should, in theory, be easy since they involve operations on

a single architecture—this is setting aside the problems with intra-architecture
comparisons raised at the end of Section 2.3.1.

17‘. . . we ignore issues relating to how a task is to be carried out and focus instead on accurately
stating what has to be done. One of the things that people find difficult to do when they start
writing formal specifications is to stop thinking procedurally. In writing a specification it is best
to think declaratively. Issues relating to efficiency and even implementability should be shelved
for the time being. There is a time and a place to think about how a specification is going to be
implemented efficiently, but this is best done when the specification has been finished.’ (Diller,
1994, 4–5).
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Pylyshyn (1984) suggests that this is the way in which computations should
be individuated in cognitive science:

In my view, two programs can be thought of as strongly equival-
ent or as different realizations of the same algorithm or the same
cognitive process if they can be represented by the same program
in some theoretically specified virtual machine. A simple way of
stating this is to say that we can individuate cognitive process in
terms of their expression in the canonical language of this virtual
machine. (Pylyshyn, 1984, 91–92)

A similar approach is used in computer science to compare the space and
time requirements of different computations: one transforms a computation to
be compared into its Turing machine equivalent and measures the space and
time it requires as the space and time it would take up on a Turing machine.

It might seem reasonable therefore that computation individuation in terms
of a canonical architecture, e.g. Turing machines, is the true notion of compu-
tation individuation. Unfortunately, it does not work.

First, even on a sympathetic reading, the proposal uses the notion of ‘trans-
formation into the same computation’, which was the notion we wished to
capture. There seems no way of understanding ‘equivalent’ in the proposal
without presupposing the supposed end product of the analysis, namely, the
notion of computational identity.

Second, the proposal does not give a justification for the right canonical
architecture. There seems no reason why Turing machines should be privileged.
Turing machines are adopted in measurements of complexity only as a matter
of convention. Why should we choose one architecture, with its concomitant
notion of computation individuation, over another?

Third, even if the choice of a particular architecture can be justified, the res-
ulting notion of computation individuation is almost certain to be too coarse-
grained. We sometimes wish to make very fine-grained distinctions between
computations. For instance, we might wish to distinguish between compu-
tations that fill an array left-to-right versus right-to-left. For a machine with
memory access set up in a certain way, it is possible that right-to-left runs
orders of magnitude faster than left-to-right.18 It makes sense in this context
to speak of two computations: a left-to-right computation and a right-to-left
computation. However, since this difference is tied to the specific details of the
architecture of the machine, it could well disappear in a translation to a canon-
ical architecture such as a Turing machine. Translation to canonical architecture
can fail to preserve fine-grained distinctions between computations.

18This can happen in real-world machines as a result of caching effects.
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Why is the use of canonical architectures legitimate in measurements of
complexity? First, such an account does not presuppose what it sets out to
define. Complexity measurements can presuppose computation individuation
without obvious circularity. Second, ranking computations in terms of their
performance on Turing machines is a convention. No claim need be made
that such a transformation gives insight into the true identity conditions of
computations. Third, ranking computations in terms of their performance
on Turing machines is only an estimate of their performance on real-world
machines. For the reasons discussed above, there is no easy inference from the
complexity profile on a Turing machine to a computation’s performance on a
real-world machine.19

Like the approaches discussed in the previous two sections, transformation
to canonical architecture does not address the question of what makes a real-
world system perform a computation—question (2) in Section 2.3 above. We
shall now consider three theories that directly attempt to address this question,
and to provide it with realist answers.

2.3.4 Chalmers’ realist approach

Chalmers (1996) proposes a theory of performing a computation aimed at
avoiding Putnam’s (1988) anti-realist conclusion. Chalmers argues that Put-
nam makes two mistakes in his analysis. First, Putnam takes too weak a view
of the modal requirements for performing a computation. Second, Putnam
focuses on the wrong class of computational architectures. If these two mis-
takes are rectified, then the performance of a computation can be seen to be a
mind-independent matter.

Chalmers begins by summarising Putnam’s theory of what it means to
perform a computation. According to Putnam, a physical system implements
a finite state automaton (FSA) provided the following condition is met:

A physical system implements an inputless FSA in a given time-
period if there is a mapping f from physical states of the system to
formal states of the FSA such that: if the system is in physical state
p during the time-period, this causes it to transit into a state q such
that formal state f (p) transits to formal state f (q) in the specification
of the FSA. (Chalmers, 1996, 311)

Chalmers argues that this account needs to be supplemented in three ways. Let
us consider each step in turn.

19Note that space and time complexity profiles by themselves do not individuate computations
either. For one thing, two computations can share the same complexity profile and yet be different
computations, e.g. Bubble sort and in-place Merge sort are both O(n2).
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Step 1: Transitions must have modal force

As specified by Putnam, the relationship between the implementing states need
not support counterfactuals. All that matters is that, given the conditions in the
actual world, if the system is in state p, then it transits into state q. Nothing is
required about the behaviour of the system if the conditions in the real-world
were different. Chalmers argues that this fails as an account of implementation
of computation for two reasons.

First, in order for a system to implement a computation, it seems a minimal
requirement that its state transitions be reliable. Not only should a system
perform in a certain way in the actual world, the system should have performed
in that way even if the environmental conditions had been slightly different.
Chalmers’ second point concerns unexhibited state transitions. Not only should
the state transitions that are manifested on the actual run be mirrored in the
physical structure of the system, but every implemented state transition should
be so mirrored. For example, if the system implements an FSA with state
transitions A → B, B → A, C → D, then even if, as a matter of contingent fact,
the system always starts in A and so always transits between A and B, it should
be the case that if the system were to start in state C, then it would transit to
state D.

Chalmers argues, however, that increasing the modal force of the relevant
conditionals does not by itself avoid Putnam’s anti-realist conclusion. A dam-
aging anti-realist result still holds. Define a ‘clock’ as a system that reliably
transits through a sequence of states s1, s2, . . . over time. Define a ‘dial’ as sys-
tem with an arbitrary number of states such that when it is put into one of those
states it stays in that state come what may. Chalmers argues that every system
with a clock and a dial implements every FSA. His argument is as follows.
Each machine state of an FSA can be associated with a physical state [i, j] of the
implementing system, where i corresponds to a unique clock state, and j to a
unique dial state. If the system starts in [1, j], then it will reliably transit to [2, j],
[3, j], and so on as the clock progresses. Assuming that the system starts its
actual run on dial state 1, the start state of the FSA can be associated with [1, 1],
and subsequent states with [2, 1], [3, 1], and so on. At the end of this assignment
process, if some FSA states have not come up, then choose an unmanifested
state, P, as a new start state and associate [1, 2] with it. Then associate physical
states [2, 2], [3, 2], and so on with the states that would follow P in the evolution
of the FSA. Continue this process until all of the unmanifested states are used
up. For each state of the FSA, there will be a non-empty set of associated phys-
ical states [i, j]. Assign the disjunction of each of these states to each FSA state.
The result satisfies the modally strengthened account of implementation.
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Therefore, Putnam’s anti-realist result is preserved albeit in slightly modi-
fied form: every open system with a clock and a dial performs every computa-
tion. It is conceivable that many open physical systems have a clock and a dial.
If they do not, then a clock and a dial can be trivially added just by placing
an old-fashioned clock inside the system. Another condition must be added
to the requirements on computation in order for non-trivial mind-independent
computation to be possible.

Step 2: Add input and output

The FSA that Putnam considers have no input or output. Chalmers argues
that in addition to increasing the modal force of the conditionals describing the
transitions, we should also require that the system have inputs and outputs. The
inputs and outputs of a computation can, according to Chalmers, be specified
in physical terms. A typical output might be to print two of the following
ink-marks ‘1’ in a row. Not just any physical state can realise this output.
Therefore, an FSA with inputs and outputs cannot be implemented by any
physical system.

Unfortunately, adding inputs and outputs does not by itself avoid Putnam’s
conclusion. As Putnam himself argues and Chalmers acknowledges, a weaker
but still damaging result holds. This result is that every physical system with a
given I/O behaviour implements any FSA with that I/O behaviour. We saw in
Chapter 1 that the same I/O behaviour can be achieved in many different ways.
A notion of computation that cannot slice computations finer than their I/O
behaviour is unsatisfactory. As Putnam notes, it would collapse functionalism
into behaviourism. Therefore, there must be more constraints on performing a
computation than just having correct I/O behaviour.

Step 3: Switch from monadic to combinatorial state architecture

The final modification proposed by Chalmers is to move away from the FSA
architecture to a more complex computational architecture. Chalmers argues
that Putnam’s result can be resisted for a type of machine he calls combinatorial
state automata (CSA). For combinatorial state automata, there are non-trivial
mind-independent conditions for performing a computation.

Note that this approach concedes that Putnam is correct about FSA, which
is not an altogether happy result. Even if realism can be secured for CSA, anti-
realism would still reign for FSA. Nevertheless, this conclusion can be tolerated
if realism about computation can be secured for all computational architectures
relevant to the CTM. It was originally a realist worry concerning the CTM that
motivated the discussion. If this worry can be quelled, then much of the heat
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would go out of the realist/anti-realist dispute about computation. For this
reason, Chalmers not only claims that realism is true for CSA architectures, he
also claims that CSA architectures include all those relevant to the CTM.

Combinatorial state automata are like finite state automata, except that their
states have a combinatorial structure instead of a monadic structure. Instead
of having a single internal state, S, the internal state of a CSA is a vector of
substates, [S1,S2, . . . ,Sn], where the ith component of the state vector is the ith
substate of the system. The state transitions of a CSA are defined by specifying,
for each component of the state vector, how its new value depends on the old
state vector and an input vector.

A physical system implements a CSA if the following conditions are met:

A physical system implements a given CSA if there is a decompos-
ition of its internal states into substates [s1, s2, . . . , sn], and a map-
ping f from those substates onto corresponding substates S j of the
CSA, along with similar mappings for inputs and outputs, such
that: for every formal state transition ([I1, . . . , Ik], [S1, . . . ,Sn]) →
([S1

′, . . . ,Sn
′], [O1, . . . ,Ol]) of the CSA, if the system is in internal

state [s1, . . . , sn] and receiving input [i1, . . . , in] such that the physical
states and inputs map to the formal states and inputs, this causes
it to enter an internal state and produce an output that map appro-
priately to the required formal state and output. (Chalmers, 1996,
325)

This completes Chalmers’ account of computation. He claims that this produces
the non-trivial mind-independent notion of computation needed to secure real-
ism about the CTM.

Problems

There are three problems with Chalmers’ approach.
First, it is unclear whether CSA architectures really exhaust all the compu-

tational architectures relevant to the CTM. Chalmers argues that CSA archi-
tectures are more relevant to the CTM than FSA. This is almost certainly true.
However, it does not show that CSA architectures are the only, or the most,
relevant architectures to CTM explanations. The possibility is left open that
there are other computational architectures that are equally, or more, relevant
to the CTM than CSA and for which realist implementation conditions can-
not be secured. This should be a worry for a realist about the CTM, because
many CTM explanations appear not to involve CSA, or state-based automata,
at all. For example, Marr’s (1982) theory of vision involves series of discrete
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computational filters that pass signals to each other in serial or parallel. This
computational architecture is nothing like a CSA or FSA, in which a single
monolithic unit undergoes state transitions.

Chalmers responds to this worry by claiming that the CSA architecture can
reproduce any other computational architecture, including all those relevant
to the CTM. Chalmers’ claim here is not that CSA are I/O equivalent to other
architectures—that much is uncontroversial.20 Rather, his claim is that all other
computational architectures can be adequately expressed in the CSA formalism. I
am wary of this claim, for reasons that should be familiar from Chapter 1. I
doubt that many of the architectures relevant to the CTM can be expressed in
the CSA formalism without doing serious violence to their characteristics. For
example, consider the filter-based architecture described above, or connection-
ist architectures. Even Chalmers’ own example of an equivalent system, the
Turing machine, is arguable. Chalmers argues that a Turing machine with finite
tape can be identified with a CSA whose state vector components record the
squares on the tape. I am not so sure. For Turing machines, there is a qualitative
distinction between the state of the tape and the state of the head. In the CSA
transformation, these two kinds of state are collapsed into one: they are both
components of the state vector. It is not obvious whether this change really
does violence to the architecture of Turing machines. At the same time, it is
not obvious that this claim is false, and that the two systems really do share the
same computational methods.

The second problem with Chalmers’ solution concerns the mapping rela-
tion that Chalmers posits between physical states and abstract machine states.
What is this mapping relation, and what are its truthmakers? Chalmers says
nothing about this, but the problem should be pressed. Whether the mapping
relation obtains or not is a key part of whether a physical system performs
a computation. If, as Chalmers claims, performing a computation is a mind-
independent matter, then this relation should have mind-independent truth-
makers. But it is not clear what its truthmakers are, or whether they could be
mind-independent. In order for Chalmers’ approach to be genuinely realist,
mind-independent truthmakers for the mapping relation must be secured.

One might claim that the mapping relation is an internal relation and hence
not in need of independent truthmakers. There are two problems with this
approach. First, it is not obvious that the mapping relation is an internal
relation. Merely stipulating that it is does not settle the matter—stipulations
by themselves cannot make it so. Second, an internal relation requires the
existence of its relata. Therefore, in order for a mapping relation to obtain, both
the physical state and the abstract mathematical object that is the CSA need

20Provided one restricts attention to architectures with finite storage.
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to exist. This response therefore commits one to the existence of mathematical
objects, and such commitments are far from uncontroversial.

The third problem is that it is not clear that CSA machines ultimately escape
Putnam’s anti-realist argument. Assume, without loss of generality, that the
substates of a CSA take numerical values. Now define an FSA with states
S = 2S1 3S2 . . . pn

Sn for every possible substate Si, where pn is the nth prime; and
transitions S→ S′ iff [S1, . . . ,Sn]→ [S1

′, . . . ,Sn
′]. The defined FSA is just like a

CSA: it is a state-based automaton with exactly the same states and transitions.
The only difference is that FSA states are characterised by scalars and CSA
states are characterised by vectors. If this difference does not matter to the
computational identity of the system, then every CSA is an FSA. By Putnam’s
result, any open physical system implements any FSA. Therefore, any open
physical system implements any CSA.

Chalmers is aware of this problem. He acknowledges that an extra con-
straint needs to be added in order to avoid collapsing the CSA case to the FSA
case. Chalmers suggests that this constraint is that ‘each element of the vec-
tor corresponds to an independent element of the physical system’ (Chalmers,
1996, 325). Unfortunately, the intended interpretation of this requirement is not
obvious. It is not obvious how ‘independent’ should be understood so as to
exclude anti-realism about computation. For this reason, Chalmers refines his
suggestion: he claims that each component of the state vector of a CSA should
correspond to a distinct physical region of the implementing system. Unlike
the initial proposal, this suggestion is clear, but unfortunately it is neither a
necessary nor sufficient condition for implementing a CSA.

Chalmers’ condition is not necessary because it is conceivable that a system
can implement a CSA even if its physical substates occupy the same spatial
regions. There are a number of ways in which this could happen. First, a system
could use properties to encode different substates, and different properties can
be instantiated at the same spatial location. Second, as Chalmers admits, the
substates of a CSA could change their implemented region over time. It is
conceivable that two substates could gradually swap over so as to entirely
occupy each other’s regions. A real-world example of this would be the use
of pointers in PCs: pointers allow the physical memory location of data to be
changed without affecting the computation.

Chalmers’ requirement is not sufficient because, even with his requirement,
Putnam’s result still applies. This can be shown as follows. Assume that the
proper parts of an open system are themselves open systems. Pick an open
physical system S and divide it into regions r1, . . . , rn. By Putnam’s result, each
of these regions implement any FSA. Each region ri therefore can be associated
with the state Si of an implemented FSA at any moment in time. Since r1, . . . , rn
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form part of the same system, they are in contact with each other—they share
a common border along their edge. Define these bordering edges as the input
and output to each FSA (if necessary, r1, . . . , rn can be chosen so that each ri has
an edge with every other r j). Since the regions implement any FSA, they imple-
ment any FSA with input and output so defined. Therefore, they implement
FSAs such that if the FSAs are in states S1, . . . ,Sn at one moment, they will be in
states S1

′, . . . ,Sn
′ at the next moment, with the transition potentially governed

by all the previous Si via the inter-region inputs and outputs. Therefore, the
system as a whole implements the state transitions [S1, . . . ,Sn]→ [S1

′, . . . ,Sn
′].

Hence, the system implements a CSA with those transitions. We have made no
assumptions about the detailed nature of this CSA: it could be any CSA. There-
fore, we can conclude that any open system implements any CSA. Modifying
the system so that it accepts overall input and output, and its transitions have
modal force is not hard.21 Therefore, Chalmers’ condition does not place the
desired constraint on the notion of computation. For both CSA and non-CSA
architectures, Putnam’s anti-realist result is preserved.

2.3.5 Copeland’s realist approach

Copeland (1996) advocates an alternative realist approach. Copeland’s claim is
that performing a computation is a matter of executing an algorithm. A system
executes an algorithm just in case there exists a modelling relationship between
that system and a formal specification of the algorithm and its supporting
architecture. Therefore, a system performs a computation just in case it satisfies,
in a model-theoretic sense, a formal specification. Copeland argues that if the
modelling relationship is restricted to being of a certain kind, then a non-trivial
form of realism about computation can be achieved.

Suppose that an entity e performs a computation. Let f denote the function
that e computes, and let α denote the algorithm that e uses to compute f .
According to Copeland, an algorithm α is a finite list of instructions such
that anyone or anything that follows the instructions in the specified order is
certain, if given the arguments of f as input, to yield the values of f as output.
Copeland argues that algorithms are architecture-dependent: each instruction
of α calls for the performance of an operation, and that operation is specific
to the architecture on which α runs. For example, if α contains the instruction
‘increment register’, then the architecture on which α runs must at least support
registers and their incrementing. An algorithm cannot run on a machine if the
instructions that the algorithm employs are not supported on that machine.

21Note that it is not necessary to have a separate dial and clock for each region. All regions could
share the same dial and clock.
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Suppose that one has a formal specification both of the list of instructions
that comprise α, and of the architecture on which α runs. Call this formal
specification, SPEC. Copeland asks us to assume that SPEC takes the form
of a set of axioms. Copeland gives an example of a SPEC. Suppose that a
machine M consists of three eight-bit registers: an instruction register I, a data
buffer D, and an accumulator A. Machine M performs various operations
such as addition, multiplication, and transferring the contents of one register
to another. Copeland gives a formal specification of the architecture of the
machine M:

Ax1: If Ī = 00000001 ACTION-IS (Ā⇒ D̄)
Ax2: If Ī = 00000010 ACTION-IS (Ā⇒ Ā + D̄)
Ax3: If Ī = 00000011 ACTION-IS (Ā⇒ Ā × D̄)
Ax4: If Ī = 00000100 ACTION-IS (Ā⇒ Ā + ¯̄D)

In this specification, ‘ACTION-IS’ is intended to be a conditional with modal
force, X̄ is intended to be ‘the contents of register X’, and ‘⇒’ is intended to be
‘becomes’.

Axiom Ax1 states that the instruction 00000001 is the instruction to wipe
the accumulator and transfer the contents of D to the accumulator. Ax2 states
that the instruction 00000010 is the instruction to add the contents of D to the
contents of the accumulator and store the result in the accumulator. Ax3 states
that the instruction 00000011 is the instruction to multiply the contents of D by
the contents of the accumulator and store the result in the accumulator. Ax4
states that the instruction 00000100 is the instruction to add the contents of the
register whose address is stored in D to the contents of the accumulator and
store the result in the accumulator. Setting aside the details of input, output,
data control between CPU and memory, and program storage and control,
these axioms specify an architecture for machine M. A SPEC consists of these
axioms plus an algorithm. An algorithm in this case would be a sequence of
instructions, such as ‘00000010, 00000001, 00000010’.

How does a formal specification, a SPEC, relate to a real-world entity, e? In
order to answer this question, Copeland introduces the notion of a labelling
scheme. A labelling scheme assigns representational content to spatial and
temporal parts of an entity. For example, a labelling scheme might assign 0’s
and 1’s to different spatiotemporal parts of an entity. For example, if the voltage
across a certain logic gate is 5 V and the voltage across another logic gate is 0 V,
then the pair might be labelled (High, Low) or (1, 0).

We can now say what it means for a entity, e to perform a computation. When
the formal axioms of SPEC are true of an entity e under a labelling scheme L, let
us say that the ordered pair 〈e,L〉 is a model of SPEC. According to Copeland,
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an entity e performs a computation just in case there exists a labelling scheme
L and a SPEC such that 〈e,L〉 is a model of SPEC. In other words, an entity e
performs a computation just in case a set of axioms SPEC are true of e under
some labelling scheme.

As Copeland notes, this simple theory of computation is vulnerable to the
kind of reductio ad absurdum arguments given by Searle and Putnam.22 If we
are to avoid the conclusion that the notion of computation is trivial, then some
additional constraints are required. Copeland argues that these additional
constraints can be introduced by requiring that the modelling relation be of a
certain kind.

Honest models

There seems to be an intuitive distinction between standard and nonstandard
interpretations of a set of axioms. According to Copeland, a nonstandard in-
terpretation is a interpretation that does not respect the intended meaning of
the axioms. A standard interpretation is an interpretation that does respect
the intended meaning.23 A nonstandard interpretation of a set of axioms con-
cerning European geography might assign the number 1 as the referent of the
symbol ‘London’, the number 16 as the referent of the symbol ‘Moscow’, and
sentences of the form ‘a is north of b’, the truth conditions ‘the referent of “b”
< the referent of “a”’. On this interpretation, the sentence ‘Moscow is north of
London’ is true, but it is no longer about Moscow and London. Similarly, the
sentence ‘Abraham Lincoln is American’ is true under the interpretation that
‘Abraham Lincoln’ refers to the Queen of England, and ‘American’ to the prop-
erty of being English, but it is no longer about Lincoln or being American. More
generally, the Löwenheim–Skolem theorem entails that if a first-order theory
is true under any interpretation at all, then it is true under an interpretation
whose domain consists of at most the natural numbers.24

Copeland claims what is wrong with Searle’s and Putnam’s arguments is
that they exploit nonstandard interpretations to show that any physical system
can perform any computation. (A labelling system is here to be understood
as an interpretation). When Searle claims that a brick wall performs a com-
putation, what he means is that the axioms that describe that computation are
true of the brick wall. But, argues Copeland, those axioms are true of the brick
wall only under a nonstandard interpretation. Brick walls do not perform com-

22For the argument, see Copeland (1996), 343–346.
23In mathematical logic, a nonstandard interpretation means an interpretation which is not

isomorphic to the intended interpretation. Copeland’s use of the term is broader: a nonstandard
interpretation may or may not be isomorphic to the standard interpretation. See Copeland (1996),
346.

24Provided the theory is countable and contains the identity predicate.
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putations under standard interpretations. Call a model based on a standard
interpretation an honest model. Copeland claims that a non-trivial notion of
computation can be achieved by requiring that a system perform a computa-
tion only under an honest model. Formally, an entity e performs a computation
just in case there exists a labelling scheme L and a SPEC such that 〈e,L〉 is an
honest model of SPEC.

What makes a model honest? The answer cannot be our intentions in in-
terpreting the axioms—that would concede the game to the anti-realist. There
must be some mind-independent conditions that determine whether a model
is honest or not. Copeland puts forward three conditions that he claims are
necessary for honesty.

Copeland’s first condition is that the model must interpret the SPEC axioms
as being about action. Copeland claims that in Searle’s example the brick
wall is a passive ‘scoreboard’, whereas it should be an active participant in
the computation. In order for an entity to perform a computation, it is not
enough that entity display a certain behaviour, it must also act in bringing
about its behaviour. Copeland explains the notion of action he has in mind
in terms of Belnap’s stit and Segerberg’s δ operator.25 However, the stit and δ
operator are intended to formalise actions concerning agents. They formalise
‘A sees to it that p comes about’, where A is an agent and p is an event.26 The
implied notion of action is intentional action. This seems too strong a notion
for computation. First, many entities perform computations even though they
lack intentional agency—for example, AND and OR logic gates. Second, we
may wish to explain agency, or at least aspects of agency that concern decision
theory, in terms of the performance of computations. Such accounts would be
circular if the performance of a computation itself required agency.

Copeland’s second condition is that the model must not interpret the SPEC
axioms in a time-relative way. The interpretations of Putnam and Searle fail to
meet this condition because they assign computational states to the wall over
a time interval, but say nothing about the state of the wall before or after that
interval. Copeland contrasts this with honest cases of computation in which an
interpretation applies to an entity throughout its lifetime. Care must be taken
in interpreting this condition, for two reasons. First, Copeland’s point cannot
be that the anti-realist is unable to interpret the wall before some particular t1 or
after some particular tn, for the anti-realist can interpret the wall as performing
a computation over any finite interval of time she likes. Second, his point cannot
be that the anti-realist is restricted to finite intervals of time, since, as Copeland

25See Belnap (1996) and Segerberg (1996).
26There are a number of differences between stit and δ but those differences are not relevant

here—both operators concern formalising actions peculiar to agents.
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admits, honest cases of computation have finite lifetimes too.
Copeland explains his time-relativity condition in the following way. The

time-relativity problem with nonstandard interpretations is, he says, that they
are ex post facto: they are constructed after the event. In contrast, in honest
cases the interpretation can be specified before the event, and one can thereby
predict aspects of the entity’s physical behaviour. However, there are two
problems with this suggestion. First, there is no reason why the anti-realist
is restricted to constructing her interpretation after the event. In the case
of Putnam, knowledge of classical physics and the boundary conditions can
be used to construct the interpretation before the event. Second, and more
importantly, it is a metaphysical, not an epistemic point that is at issue here. In
terms of the truthmakers of computation, it does not matter if an interpretation
can only be constructed by us after the event: all that matters is that such an
interpretation exists. (Plausibly, if an interpretation exists after the event, then it
also existed before the event.) Questions about prediction are largely irrelevant
in this context. It is the existence of interpretations, not our ability to find them
(which may be limited ex post facto), that is at issue when considering the facts
of computation.27

Copeland’s third condition is that the model must interpret the SPEC axioms
as having counterfactual force. However, we have already seen that this con-
dition is easy to meet. Any system with a dial and a clock satisfies the relevant
counterfactual conditionals . Although counterfactual dependency might be a
necessary condition for computation, it cannot be a sufficient condition. Since
the two other conditions that Copeland suggests—intentional action and lack
of time-relativity—are not even necessary, let alone (taken together with the
counterfactual condition) sufficient, we are left with the anti-realist’s reductio.
In terms of the mind-independent facts, nearly every physical system performs
any computation. Therefore, Copeland’s account does not achieve the desired
result: a notion of computation that is both mind-independent and non-trivial.

Before closing, two further aspects of Copeland’s account should be noted.
The first is that Copeland says nothing about the truthmakers of the labelling
scheme. This matters because if the truthmakers of the labelling scheme are
mind-dependent, then realism about computation is false, and it would be
unclear why realism about the other conditions is even worth fighting for.
Second, even if Copeland’s account is correct, it does not provide an account of
algorithm or computation individuation. Apart from merely syntactic differ-

27It is worth noting that Copeland acknowledges that there is a difference between the existence
of an interpretation, and our ability to construct it: ‘A sentence of the form “There exists a function
f such that . . . ” may be true irrespective of whether it is know to be true. I use the phrase “there
exists a labelling scheme and a formal specification such that” in the same way.’ (Copeland, 1996,
338).
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ences between different axioms, the account provides no clue as to when two
computations are the same or different.28

2.3.6 Mellor’s realist approach

Mellor (1991a) presents a theory of computation that he developed independ-
ently of the anti-realist considerations discussed above. However, his theory
can be used as a response to such arguments. Of all the theories considered so
far, Mellor’s position is closest to the view presented in this thesis. In short, I
think that Mellor is essentially correct. The differences between his approach
and my own concern the details, emphasis, and implications of the approach,
not the fundamentals. Mellor outlines his theory in rapid and characteristic-
ally terse fashion. The position developed in the next two chapters, although
happened upon independently, can be seen as an elaboration and defence of
his position.

Mellor defines a computation is a causal process that maps certain inputs
to certain outputs. The notion of a causal process is meant to be understood
as having counterfactual force. In other words, to say that something is a
‘causal process’ implies not just what does happen, but also what would have
happened. Not all causal processes are computations. In order to qualify
as a computation, a causal process must be semantic and syntactic. A causal
process is semantic just in case its inputs and outputs have representational
content. A causal process is syntactic just in case the representational content of
each input/output depends, in some well-defined way, on the representational
content of that input/output’s spatial or temporal parts. Not all causal processes
satisfy these two conditions. Therefore, a non-trivial notion of computation is
achieved.

Mellor does not explicitly consider realism about computation, but it is clear
how such a position could be developed. His account makes computation de-
pendent on representation. If one can be a realist about representation, then
one can be a realist about computation. What are the prospects for realism
about representation? In the case of electronic computers, those prospects are
poor. Electronic computers generally represent only what we choose them to
represent. However, for other causal processes, and in particular those in the
brain, the prospects for realism about representation seem better. A number
of philosophers have defended realism about representation in this context, in-
cluding Dretske (1981), Fodor (1990b), and Millikan (1986). If, for example, our
beliefs represent in a way that does not depend on attitudes towards them, then
a causal process in which those beliefs take part could be a mind-independent

28See Section 2.3.1 for criticism of syntactic approaches to computation individuation.
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computation. Mellor does not go so far as to claim realism about representation.
He claims that beliefs represent, but he does not say what their truthmakers
are.29 However, if realism about representation can be secured, then Mellor’s
account secures realism about computation as well.

In light the argument of Chapter 1, it is worth noting that Mellor claims
that the conditions for a causal process to be a computation—namely, that it be
both semantic and syntactic—are interdependent. A causal process is syntactic
just in case the representational content of each input/output depends, in some
well-defined way, on the representational content of that input/output’s spatial
or temporal parts. Therefore, in order for a causal process to be syntactic, it must
already have semantic content. Syntax, as defined above, is not independent of
semantics; syntax presupposes semantics. Note also that if the first condition is
satisfied—if the process is semantic—then the second condition is automatically
satisfied. This is because even if a token has no interesting syntactic structure, it
still qualifies as having a syntax, albeit a simple one: its representational content
depends on a function, namely the identity function, of the representational
content of its spatial and temporal non-proper part. Even if the proper parts
of a token do not have distinctive representational content, that token can still
qualify as having a syntax merely by having semantic content. Hence, if the
semantic condition is satisfied, then the syntactic condition is automatically
satisfied too.

Contrast with the PR-model

There are five respects in which the position developed below differs from that
of Mellor.

First, Mellor restricts the representational content of tokens that participate
in computations to propositions. A token may represent the proposition the earth
is round, and a part of that token may represent the earth, but a whole input
or output token of a computation cannot represent the earth or roundness. The
inputs and outputs of a computation must represent propositions. The motiv-
ation for this requirement is the intuition, with which Mellor identifies, that to
perform a computation is to process information. Information is either true or
false. Therefore, the bearers of information must be truth-evaluable; they must
be capable of truth or falsity. Whatever theory of propositions one favours,
propositions are the paradigmatic entities that are truth-evaluable. Therefore,
Mellor elects to call the bearers of information ‘propositions’. Since computa-
tion is information processing, computation is the processing of propositions.30

29‘How beliefs represent states of affairs is another question, which I fortunately need not an-
swer.’ (Mellor, 1991a, 71).

30See Mellor (1991a), 62–63.
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I am not so sure. I am doubtful that information processing should be
taken as definitive of computation. First, the information processing model for
explaining the mind pre-dates the computational model, and the computational
model should not be taken as beholden to it.31Second, the sense in which
computations are said to ‘process information’ is fairly loose and ill-understood.
As Mellor notes, the relevant notion of information is not that of mathematical
information theory. In my view, claims about information processing can be
excised from cognitive science with little or no loss; typically, such claims carry
rhetorical value rather than analytical weight. If they do carry analytical weight,
then the intended notion of information is meant to be understood in terms
of computation, not vice versa. Computation is regarded as the respectable
notion in cognitive science, not information. Few cognitive scientists would
be willing to rest the foundations of their discipline on their pre-theoretical
intuitions about what is and what is not information. Third, there seem to
be paradigmatic cases of computation in which inputs and outputs do not
represent propositions. Mellor himself gives an example. Imagine a machine
that computes the f (x) = x2 function: it takes tokens that represent numbers
(e.g. ‘5’) as input, and yields tokens that represent numbers (e.g. ‘25’) as output.
Numbers are not propositions (for one thing, they do not have a truth value).
Therefore, we appear to have a counterexample to Mellor’s claim. In response,
Mellor argues although the machine by itself is not a computer, a joint system
comprising of the machine and someone using it to process propositions is
a computer. For example, if I use the machine to verify that if the side of a
square is 5 cm then the area of the square is 25 cm, then there is an overall
causal process, of which the machine is a part, in which the overall input (‘the
side of a square is 5 cm’) and the overall output (‘the area of the square is
25 cm’) represent propositions. Mellor says that this overall process qualifies
as a computation, but the process inside just the machine does not. This seems
wrong. The squaring machine is a paradigmatic case of computation. Based on
our pre-theoretical intuitions about computation, there could not be a clearer
case. Mellor is too strict. He ignores paradigmatic cases of computation in order
to preserve an idea, to which many cognitive scientists would be reluctant to
commit, of computation as information processing.

Second, the only tokens that Mellor considers as genuinely representational
are beliefs (and perhaps other propositional attitudes). All other tokens get
their content in a derivative fashion from beliefs.32 Mellor does not say much

31See Lachman et al. (1979), 121 for a discussion of how the information processing model was
superseded by the computational model.

32For example, discussing a mental representation ‘c > b’ that takes part in a computation but is
not a belief: ‘Like my computer token ‘C >> B’, [‘c > b’] represents c > b only via the token beliefs
that are its causes and effects.’ (Mellor, 1991a, 75).
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about the motivation for this assumption, but it seems too strong. First, there
might be tokens that represent, and represent in a realist way according to
Dretske (1981), Fodor (1990b), and Millikan (1986), but which are not beliefs.
For example, the activity in a small cluster of neurons might represent a line
in the visual field without being a full-blown belief—the representation might
not be conscious, and it may not connect with desires in the right ways to
cause action. Cognitive science is full of such representations. Prima facie, there
seems no reason why these states cannot be genuinely representational. It is
both reasonable, and in the spirit of cognitive science, to posit sub-personal
representational states without belief.

Third, the only processes that Mellor considers are causal processes. This is
unduly restrictive. In Section 3.2.7, I argue that any class of relations that sup-
ports the relevant counterfactuals suffice to implement a computation. There-
fore, computations need not be causal; other dependency relations can be used.
Of course, the force of this point depends on how broadly one understands the
notion of ‘causal process’. Unfortunately, Mellor does not say anything about
how this notion should be understood. This is doubly unfortunate, because it
also obscures the truthmakers of his theory. It is likely that Mellor intends talk
of causal processes to be made true by more basic facts, such as combinations of
events, individuals, properties, and relations. However, he gives no indication
of how this is to be done. In the account in the next two chapters, process talk
is explicitly reduced to talk of standard metaphysical entities.

Fourth, like Copeland, Mellor does not provide an account of the individu-
ation conditions of computations. This is understandable, given that Mellor
is interested in different problems concerning computation. However, as we
have seen, the individuation conditions of computations are important. The
conditions under which two computations are the same or different determine
whether a given cognitive science theory is true or false.

A final point of difference between my position and Mellor’s is that he draws
a conclusion about the extent to which the mind is computational with which I
disagree. Mellor claims that it is only possible for two kinds of mental process—
inference and perception—to be computations. All other mental processes must
be non-computational. Mellor’s argument for this conclusion is as follows.

First, mental processes whose inputs and outputs do not represent can be
ruled out immediately. Mellor claims that mental processes involving pains
and other sensations fall into this category. These mental processes cannot be
computations. Second, mental processes that represent, but do not represent
propositions, can be ruled out for similar reasons. Third, many of the remaining
aspects of the mind that do represent propositions cannot participate in com-
putation either. This is because, although they represent propositions, their
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representational content does not convey information. For example, consider
desires. Desires have propositional content, but, according to Mellor, desires
do not embody information—they do not represent any proposition as true. A
desire, such as the desire to close a door, represents the proposition that the door
is closed, but it does not represent that proposition as true. The same is true
of other propositional attitudes such as hoping, fearing, and wishing. Belief
is the exception because, as Moore’s paradox indicates, to have a belief is to
take the represented proposition as true. Therefore, beliefs embody informa-
tion. Beliefs—and perceptions, for which a similar argument can be made—are
legitimate candidates for information processing, and hence for computation.
Other propositional attitudes are not.33

Unsurprisingly, I do not accept this conclusion. As already discussed, in-
formation processing, at least in the context of the CTM, should not be taken as
analytic of computation. Our intuitions about information processing should
be guided by our intuitions about computation, not vice versa. Furthermore,
computation need not, as Mellor also claims, aim at preserving truth. Compu-
tation may serve other functions as we saw in the case of the squaring machine,
such as systematically transforming one class of representations into another
class of representations. On the view developed in the next two chapters,
there is no reason why computations cannot involve desires as well as other
non-propositional kinds of representation.

2.4 Conclusion

This concludes the survey of existing problems for, and solutions to, realism
about computation. We have seen a number of anti-realist arguments: (1) re-
ductiones ad absurdum of the notion of mind-independent computation; (2) the
claim that an interpreter is necessary to interpret the input, output, and inter-
mediate states of a computation; (3) the claim that an interpreter is necessary
to interpret a computation as having an infinite domain; (4) the claim that an
interpreter is necessary to make sense of correct functioning. In the next two
chapters, a view is developed that will enable us to respond to these objections.
This view will show that realism about computation is possible. It will also en-
able us to provide an account of the individuation conditions of computations
in terms of the individuation conditions of standard metaphysical entities. It is
to this positive position that we now turn.

33See Mellor (1991a), 77–81.



Chapter 3

Preliminaries

This chapter and the subsequent chapter provide a semantics for our compu-
tation talk. The proposed semantic model is called the ‘process and repres-
entation model’ (PR-model). Once this semantic model is in place, we shall
be in a position to identify the truthmakers of that semantic content. In par-
ticular, we shall be in a position to identify whether those truthmakers can be
mind-independent. The PR-model provides a semantics for: (1) claims that
a system performs a computation; and (2) claims that a system performs one
computation rather than another. This chapter begins with an overview of the
CTM and two key intuitions concerning computation. The aim of the PR-model
is to formalise this account and these two intuitions. The rest of the chapter
introduces the basic concepts of the PR-model and the kinds of metaphysical
commitments they entail. This prepares the way for the task of the next chapter:
the description of the PR-model proper.

3.1 The discourse to be formalised

3.1.1 The computational theory of mind

The computational theory of mind attempts to answer the question: ‘Given a
cognitive process P that systematically transforms inputs, Φ, into outputs, Ψ,
how does P work?’ In particular, the task is to give some explanation of how
process P works that fits with general assumptions about the finite nature of the
human mind and its relationship to the physical world. Examples of cognitive
processes that psychologists have been interested in explaining include: syntax
parsing, simple shape recognition, and deductive inference.

If the I/O behavior of a process is particularly simple, then it is easy to
hypothesise how that process might work. For example, suppose that for any

65
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input,φ, presented to a process R, that process yieldsφ again as output. Process
R does no more than reproduce its input as output. The I/O behaviour of process
R is so simple that it is easy to come up a mechanism for how it could work.
For example, R could be a noiseless wire connecting input to output: if an input
φ is presented at one end of the wire, then an output φ is yielded at the other
end. Of course, R might in fact work in a more complex way: a Rube Goldberg
machine might connect its input to its output. However, the I/O behaviour of
R is simple enough that it is not hard to come up with a mechanism for how R
might work. As we shall see, this condition is not met for many processes with
more complex I/O behaviour. Here is another example: a process S always
yields a fixed output ψc for any input φ. The I/O behaviour of S, like that of
R, is simple enough that it is easy to come up with a mechanism for how S
could work. One such mechanism would be a noisy wire: a wire that ignores
its input. For every input φ presented at one end of the wire, the same output
ψc is yielded at the other end.

The I/O behaviour of processes R and S is such that we can easily hypothesise
how they might work. If all psychological processes were like R and S, then
there would be little motivation for computational theories of mind—cognitive
processes could be explained in more direct ways. However, psychologists are
often interested in processes that have much more complex I/O behaviour than
either R or S. For these processes, theories about how they might work are not
so easy to come by. It is here that the notion of computation can help.

Consider the I/O characteristics of our syntax parsing processes for natural
language. A syntax parsing process takes strings of phonemes as input and
yields a grammatically structured representation as output. Any one of a vast
number of strings of phonemes can be paired with any one of a vast number
of grammatical representations. The I/O pattern of the process is incredibly
complex. One struggles to find a simple mechanism of the kind described
above to explain how it could work.1 Generally speaking, if a cognitive process
has complex I/O behaviour—and many cognitive processes that psychologists
are interested in do—then it is difficult to explain how such processes could
work. It is not just difficult to explain how such processes in fact work, it is
difficult to explain how they might work.

Complicated I/O behaviour is one source of problems for explaining how
cognitive processes work. Another source of problems is that some cognitive
processes appear to be sensitive to the semantic content of their input. Prima
facie, it is difficult to know how such behaviour is possible. For example,

1Historically, associationism has been a popular mechanism for explaining how complex cog-
nitive processes work. Associationist mechanisms have been advocated by theorists from Hume to
Skinner. See Chomsky (1957, 1959) for an argument that associationist mechanisms cannot account
for our syntax parsing I/O capabilities.
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consider the cognitive process of deductive inference. This cognitive process
tends to preserve the semantic property of truth: if one already believes truths,
then the cognitive process of deductive inference tends to take one to more
truths. How is this possible? Again, it is unclear how to explain how such a
process might work.2

Computational theories of mind can potentially solve both problems. Com-
putation provides a mechanism for how complex, semantically sensitive, pro-
cesses could work. How does the notion of computation do this? In order to
answer this question we need to discuss what it means for a process to be a
computation. If a process is a computation then, among other things, it must
satisfy two conditions: (1) it must be made up of a finite number of simple
steps; and (2) it must be sensitive to the formal structure of its input. Let us
discuss each condition in turn.

Computations are made up from simple steps

A computational process P is made up from a finite number of simple steps
just in case it is made up from a finite number of simple subprocesses p1, . . . , pn.
A process is made up from a finite number of subprocesses just in case it is
constituted from start to finish by pi, and no part of it is not constituted by pi.
The pi’s can be arranged in a variety of ways. Two pi can be connected together
by the output of one pi being the input of another. However, the process need
not be a linear sequence of pi’s: the pi’s can form a complex network. A process
is made up from simple subprocesses if, in addition to the above condition, it is
not mysterious how the individual pi work. For this condition to be satisfied, the
I/O behaviour of the individual pi must be so simple that it is possible to directly
explain how they might operate. Like processes R and S, the I/O behaviour of
the simple pi must be simple enough that is clear how those patterns could be
achieved.

Computations are sensitive to formal structure

Each input of a process’s pi must have a formal or syntactic structure. This
condition can be satisfied in a number of mundane ways.3 For example, an
input can have formal structure by consisting of eight ink-marks, each of which
is ‘0’ or ‘1’, separated by a time delay. Such an input has a temporal formal

2Associationist mechanisms again are not adequate. Associations between beliefs need not
follow logical entailment. Human subjects generally have just as strong associations between
truths and falsehoods as they do between truths and truths. It is hard to see how an associationist
account can explain our ability to systematically preserve truth.

3It is worth emphasising that the notion of computation under consideration here is that of
implementation in real-world systems. The sense in which computation in mathematics is formal
or syntactic will not be considered.
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structure. (This eight-fold structure is called a byte). Another possible structure
is spatial. The eight signals could be separated by spatial displacement, like
the ink-marks in ‘01101110’. Or, instead of being made up from ink-marks,
the input could be made up from electrical signals. For example, the input
could be a time-delayed sequence of electrical pulses, each of which is 0 V
or 5 V. Alternatively, the components of the electrical signal could occur at
different frequencies but at the same time. Another possibility is that the
input is made out of distinct interlocking parts, and thereby have a part–whole
structure. One such input is a Lego model, which is built out a finite number of
distinct interlocking blocks. Another is a DNA molecule, which is built out of a
sequence of distinct interlocking nucleotides. In each case, formal structure is
just an aspect of an input’s physical structure.4 A computational process can be
sensitive to the formal structure of its inputs by being sensitive to the physical
features that constitute that structure. There are many examples of processes
that are sensitive to the temporal structure, spatial structure, and part–whole
relations of their inputs.

These two conditions that a computational process must satisfy—being made
up from a finite number of simple steps and being sensitive to formal structure—
enable us to explain how complex semantically sensitive I/O behaviour is pos-
sible. First, let us consider complex I/O behaviour.

Explaining complex behaviour

Complex I/O behaviour can be achieved if simple subprocesses are chained
together in right way. A few simple pi are sufficient to produce extremely
complex I/O behaviour. Indeed, any I/O behaviour that can be produced by
a computer can be reproduced by a computational process consisting of just
AND gates and OR gates.5 AND and OR gates are good candidates for simple
pi: their I/O behaviour is simple enough that, like processes R and S, it is easy
to explain how they might work. In the case of electronic computers, AND and
OR gates are usually explained in terms of simple electrical principles. These
gates are usually built out of transistors, but they could be built in other ways.6

Computation provides us with a way of explaining how cognitive processes
with complex I/O behaviour could work. By breaking up a process into simple
parts, each of which it is obvious how it could work, we provide an explanation

4If the computation is implemented in a non-physical medium, then the formal structure of the
input is one of the structures in the medium in which that computation is implemented.

5Strictly speaking, any computable behaviour achievable with finite memory.
6An AND gate consists of two switches (wires that can be open or closed) in serial: the output

of the gate is on only if both switches are closed. An OR gate consists of two switches in parallel:
the output of the gate is on if either one of the switches is closed. AND and OR gates are usually
implemented using transistors because transistors are fast switches.
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of how a cognitive process with complex I/O behaviour could be achieved. Such
explanations may turn out to be wrong—we may make a mistake and attribute
a mechanism that a process does not in fact possess. However, at least we have
something that we did not have before: an explanation of how such a process
might work.

Explaining semantically sensitive behaviour

Computation also provides a mechanism for how a process could have se-
mantically sensitive I/O behaviour. Semantic sensitivity can be achieved if the
formal structure of an input covaries with its semantic structure. Covaration
between formal structure and semantic structure is common. For example,
the shape of natural language words often covaries with their meaning within
their language. We have already discussed how computational processes are
sensitive to the formal structure of their input, namely, by being sensitive to
the physical features that constitute that structure. If formal structure covaries
with semantic structure, then, by being sensitive to formal structure, a com-
putational process will also be sensitive to semantic structure. Computation
therefore provides a mechanism for explaining how semantically sensitive I/O
behaviour is possible.

For example, consider the cognitive process of deductive inference. This
cognitive process tends to preserve truth. The problem is to explain how this
is possible: how can a physical process be sensitive to a semantic property like
truth? Applying the strategy above, a computational process can track truth-
preservation by tracking a formal counterpart of truth-preservation: proof-
theoretic entailment. Suppose that a computational process, if presented with
an input φ that represents the proposition snow is white and grass is green, yields
an output ψ that represents the proposition grass is green. The inference from
φ to ψ is truth-preserving: if φ is true, then ψ cannot help but be true. As
discussed above, there are a variety of ways in which the structure of φ could
reflect its truth-functional semantics. The input φ might be a composite of
three components: one, φ1, representing the first conjunct, one, ∧, representing
the conjunction operator, and one, φ2, representing the second conjunct. The
three members of the composite could be ink-marks on the page, e.g. φ =
‘φ1 ∧ φ2’. Alternatively, the three members of the composite could be three
electrical signals. Whatever the details of the formal structure of φ, if that
formal structure mirrors φ’s truth-functional structure, then the process can
track truth-preserving inferences.

The same strategy can be used to explain apparent I/O sensitivity to any
other semantic property. All that is required is that the formal structure of
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the input covary with all the semantic features relevant to the processing. For
example, some word processors have an ‘Auto Summarise’ feature that takes
sections of text as input and yields a short summary of the text as output. The
I/O pattern of this process aims to be semantically sensitive. The computer
program does not achieve this I/O by somehow ‘knowing’ the meaning of
the text. Instead, it relies on covaration between formal features of the text,
such as the frequency of words and phrases, with the meaning of the text. By
responding to formal features, the program can have an I/O behaviour that
approximates that it would have if it were responding directly to semantic
features.

It is not obvious to what extent this strategy can be used to explain se-
mantic sensitivity in human cognition. Putnam (1975a, 1988) and Burge (1986)
argue that many important semantic features of human cognition do not cov-
ary with formal properties available to an individual’s cognitive processes. If
psychological laws employ these external semantic features, then the mechan-
ism through which those laws work cannot be computational. Therefore, there
might be limits to how far computation can be used to explain psychological
processes. For computational responses, see Block (1986); Fodor (1980a, 1994);
Stich (1983).

Explanatory value and truth

The role that computation plays in cognitive science is to explain how complex
semantically-sensitive cognitive processes are possible. Without the notion of
computation, it is not clear how these processes work, or how they are possible
at all. Therefore, the point of computational theories of mind is that they provide
a way to explain how complex semantically-sensitive cognitive processes could work.

An explanation can have many virtues. An explanation can be good because
it unifies previously diverse phenomena, because it is useful in creating new
technology, or because it provides a perspicacious way of arranging existing
data. One of the principal virtues of a good explanation—some would say an
essential quality of a good explanation—is that it be true.7 The question that
concerns this thesis is what is it for a computational theory of mind to be true.
The answer will come in two parts: first, an account of the semantic content
of a computational theory of mind—what do we mean when we say that the
mind or brain performs a particular computation? Second, an account of the
kind of facts that make that semantic content true or false—the truthmakers of
that theory.

This chapter and the next concern the semantic part of the project. We

7For example, see Hempel (1965), 248–249.
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already have an outline of what we mean when we say that a system performs
a computation. This outline is that a system performs a computation just in
case the process involved is made up from simple parts and those parts are
sensitive to the formal structure of their inputs. However, the content of these
claims is still far from clear. In the rest of this chapter, and the subsequent
chapter, a more detailed account is given.

3.1.2 Two key intuitions

The account above needs to be supplemented by two intuitions. These two
intuitions are essential to our notion of computation.

(i) Computation involves representation

The first intuition is that computation involves representation. For the moment,
the version of this claim that I wish to defend is that the inputs and outputs of
a computation must have representational content. The claim will be extended
to apply to the inputs and outputs of the intermediate steps of a computation
in Section 4.2.1.

A computation maps certain inputs to certain outputs. A computation,
in the sense considered by this thesis, is a mapping between real-world stuff :
it takes stuff (ink-marks, electrical signals, etc.) as input and yields other
stuff, or other arrangements of stuff, as output. The claim made above is that
computations are not just mappings between any kind of stuff, but mappings
between stuff that represents.

This claim does not place any restriction on the type of representation re-
lation involved. Nothing is said, for example, to require that the inputs and
outputs of computational processes must intrinsically or naturally represent. In
some cases this may be true—the inputs and outputs may naturally represent—
in other cases it may not—the inputs and outputs only represent because we,
as humans, interpret them as doing so. Nevertheless, whatever kinds of facts
underlie representation, the inputs and outputs of a computation must repres-
ent.

Before defending this claim, it is worth noting that it is already widely, al-
though not universally, held. Fodor uses the claim as part of his argument
for the existence of a language of thought. Fodor’s argument consists of three
steps. The first step claims that the only plausible psychological accounts of
many cognitive processes are computational. The second step claims that com-
putation requires representation. The third step claims that the representations
involved in cognition have a language-like nature.8 Many philosophers have

8See Fodor (1975), 27–29, 34, 31–32 for the first, second, and third steps respectively.
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disagreed with Fodor’s conclusion, but criticism has usually focused on the
first or third steps, not the second step. Philosophers with views as divergent
as Dennett (1971), Churchland (1986), and Cummins (1989), agree that com-
putation involves representation. Even Searle (1992) agrees that computation
involves representation.

Here are three arguments for why computation has to involve representa-
tion:

Argument 1. Paradigmatic cases of computation involve representation.

Many paradigmatic cases of computation involve representation. For ex-
ample, Turing’s clerk, who performs computations by hand, performs a map-
ping between representations. The clerk maps representations (ink-marks on
the page) to other representations (other ink-marks on the page). The clerk’s
ink-marks can be interpreted as representing either numerals or numbers. This
ambiguity in representational content is not unusual. The following ink-marks,
1, can represent either the numeral ‘1’ or the number 1, depending on context.
The context can be partially specified by adding quotation marks. However,
this convention is not always decisive. In many cases there is opportunity to
interpret the ink-marks either way. As we will see later, it is not unusual for the
same physical stuff to have multiple representational contents associated with
it, and therefore for the same physical process to have multiple computational
identities.

Another paradigmatic case, electronic computation, also involves repres-
entation. An electronic computer takes electrical signals as input and yields
electrical signals as output. The input and output electrical signals of a com-
puter are not just any electrical signals, but electrical signals that represent.
Typically, the electrical signals of a computer represent 0’s and 1’s. Again, there
is possibility of multiple representation. A given signal may represent both a
long sequence of 0’s and 1’s, and the text of a new e-mail message. Or, a given
signal may represent both a sequence of 0’s and 1’s, and a picture to display on
the screen.

Argument 2. Representation is involved in the notion of I/O equivalence.

We saw in Chapter 1 that I/O equivalence is a necessary, but not sufficient,
condition for performing the same computation. There is more to the notion of
computational identity than I/O equivalence, but I/O equivalence is at least an
essential component of that notion. I wish to claim that it is hard to make sense
of I/O equivalence without assuming that computation involves representation.

Imagine two I/O equivalent systems that are made out of different materials.
One system may be made out of silicon and take electrical signals as inputs
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and outputs, the other system may be made out of tin-cans and string and
take marbles as inputs and outputs. Suppose that the two systems are I/O
equivalent. What could their I/O equivalence consist in? The respective inputs
and outputs of the two systems may be so different so as to not have any
physical or structural properties in common. The only plausible answer seems
to be that their respective inputs and outputs represent the same thing.

Another example would be two computational systems that perform the
same numerical calculation. Suppose that one system takes ink-marks shaped
like Roman numerals (I, II, III, IV, . . . ) as input and yields ink-marks shaped
like Roman numerals as output. Suppose that the other system takes ink-
marks shaped like Arabic numerals (1, 2, 3, 4, . . . ) as input and yields ink-
marks shaped like Arabic numerals as output. Suppose that we wish to say
that the two systems are I/O equivalent. What could their I/O equivalence
consist in? There need be no physical or structural similarity between their
respective inputs and outputs. The only respect in which the two systems are
I/O equivalent seems to be that their inputs and outputs represent the same
thing.

Argument 3. Representation is needed to make some basic distinctions.

Any plausible notion of computation needs to be able to make certain basic
distinctions. One such distinction is that between AND gates and OR gates—
the building blocks of many electronic computers. AND and OR gates have
the following characteristics. The output of an AND gate is 1 just in case both
inputs are 1, otherwise it is 0. The output of an OR gate is 0 just in case both
inputs are 0, otherwise it is 1.

a b a AND b
0 0 0
0 1 0
1 0 0
1 1 1

a b a OR b
0 0 0
0 1 1
1 0 1
1 1 1

Table 3.1: AND and OR gates

Consider an electrical system with following characteristics. The system
gives an output of 5 V if both its inputs are 5 V, otherwise it gives an output of
0 V. Does this system implement an AND gate or an OR gate? At first glance,
the system appears to implement an AND gate: it gives an output with 5 V
just in case both its first and its second inputs are 5 V. But why should 5 V be
associated with 1, and 0 V with 0, rather than the other way around? If 5 V
is associated with 0, and 0 V with 1, then according to the tables above, the
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system implements an OR gate. So which gate does the system implement?
As the system has been described so far, there is nothing to decide between the
two options. No physical or structural property decides whether 5 V should be
paired with 1, and 0 V with 0, or 5 V with 0, and 0 V with 1. The situation is
symmetrical with respect to both assignments.

in1 in2 out
0 V 0 V 0 V
0 V 5 V 0 V
5 V 0 V 0 V
5 V 5 V 5 V

Table 3.2: An implementation of an AND gate or an OR gate?

The notion of representation allows us to decide between these two options.
We can say that if an electrical signal of 5 V represents 1, and if an electrical
signal of 0 V represents 0, then the system implements an AND gate. Altern-
atively, if an electrical signal of 0 V represents 1, and if an electrical signal of
5 V represents 0, then the system implements an OR gate. It seems that the
difference between an implementation of an AND gate and an OR gate is a
difference in representational content.

The representational nature of real-world computation is sometimes ob-
scured by the widely accepted claim that computation is syntactic. Compu-
tation is syntactic in at least two senses. First, as we saw in Section 3.1.1,
computation is sensitive to the formal, syntactic, structure of its input. This
requirement is, of course, compatible with the claim that such input has repres-
entational content. The second sense in which computation is syntactic is that
the inputs and outputs of a computation often represent syntactic entities. We
often take an input to a computational process to represent a numeral (‘0’ or
‘1’) rather than a number (0 or 1). Thus, one often finds the inputs and outputs
of an AND gate labelled with the numeral ‘0’ or ‘1’, and this numeral called its
‘syntactic content’. Such content may be a syntactic, but it is representational
nevertheless.

Another possible source of confusion about syntax arises from the conflation
of the notion of real-world computation with the notion of computation in
mathematics. Real-world computation and computation in mathematics are
different. A Turing machine employs the mathematical notion of computation.
A Turing machine is not a physical object, it is an abstract mathematical object;
it does not ‘perform’ a computation in the same sense as a physical system. A
Turing machine can be identified with the quintuple M = (Q,Σ,Γ, δ, q0), where
Q is a finite set of state symbols, Γ is a finite set of numerals that can be used
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on the tape, B a special symbol that represents a blank, Σ is a subset of Γ − {B}
called the input numerals, δ is a partial function from Q × Γ 7→ Q × Γ × {L,R}
called the transition table, q0 ∈ Q is a special state called the start state, and the
symbols L,R the direction of movement along the tape (conventionally labelled
‘left’ or ‘right’).9 A Turing machine so defined is a mathematical object, a set
of sets of symbols. It is not dissimilar in ontological status to a mathematical
function, such as f (x) = x2.

A Turing machine, at least in the first instance, operates on numerals instead
of numbers. It takes numerals (symbols) as input and yields numerals (symbols)
as output. A Turing machine therefore operates on syntactic entities.10 Two
points should be made about these syntactic entities. First, syntactic entities
such as numerals are themselves abstract objects—they are not identical to
ink-marks on the page, although ink-marks may represent them. Second,
syntactic entities are commonly thought of as uninterpreted in this context, i.e.
as lacking representational content. Hence, mathematical computation does
not need to operate on entities that represent. This may lead one to think that
the computations performed by real-world systems do not need to operate on
entities that represent either. Unfortunately, this is not true. Although symbolic
entities, such as numerals, provide a way of individuating Turing machines,
these objects are not available in the real-world. In real-world computation,
we are stuck with physical stuff, such as ink-marks and electrical impulses.
As we have seen, the only way for such stuff to support a plausible notion
of computational identity is to employ the notion of representation. The non-
representational nature of mathematical computation does not transfer to real-
world computation. The two notions of computation have different problems
and metaphysical commitments.

(ii) Computations are the sum of their parts

The second intuition to which I wish to draw attention is that computations
are the sum of their parts. It seems intuitively plausible that computations, at
least in some sense, have parts. Computations are not undifferentiated wholes:
they consist of parts that are connected in ways distinctive to that computation.
The parts of a computation are its steps, or subprocesses. For example, a
computation that calculates a JPEG compression of an image consists in a series
of steps: divide the image into blocks of 8 × 8 pixels, apply a discrete cosine
transformation to each block, quantise the coefficients to reduce the amount of
data, perform a Huffman compression on the resulting coefficients, and so on.

9See Sudkamp (1998), 259–260 for more on the definition of a Turing machine.
10See Boolos et al. (2002), 24–25, for more on this point.
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Each of these steps can potentially be broken down further into smaller steps,
which themselves can be broken down, and so on, until one reaches the steps
that one considers simple.

We saw that I/O equivalence is a necessary but not sufficient condition
for computational identity. In order for two systems to perform the same
computation, the two systems must be I/O equivalent and they must achieve
their I/O pattern in the same way. One of the problems raised in Chapter 1 was
that it is not clear how to spell out the content of this latter requirement. If
computations are made up of parts, then a provisional answer can be given.
We can say that two computations work in the same way just in case they have
the same parts and those parts are connected in the same ways. In other words, two
systems perform the same computation just in case they are made up from the
same subprocesses, and those subprocesses are connected in the same ways.
For example, a system performs a JPEG computation just in case it has the
subprocesses described above, and those subprocesses are connected in the
same way. I believe that this intuition—that computations are the sum of their
parts—is the key to our notion of computational identity.

3.1.3 Outline of problem and solution

The discussion so far has glided over some important issues. Among these
are: What is a process? When are two processes the same? What is it for a
process to be made up from subprocesses? What is it for two subprocesses to
be connected? How does a representation have formal structure? How does
representational content contribute to computational identity? The discussion
of the previous sections did not answer these questions. Indeed, there are no
generally accepted answers within the CTM community. The remainder of this
chapter and the next argue for an account that provides answers.

There are many ways in which such an account could be developed. For
example, one might attempt to fill in the notion of ‘process’ by positing sui
generis entities in the world, processes. On this view, along with whatever
else exists, there also exist processes. This approach provides answers to some
of the questions above. For instance, one could say that two processes are
the same just in case the two corresponding entities in the world are in fact
identical, and that a process is made up from subprocesses just in case it is
literally the mereological sum of those entities. However, whatever the virtues
of such an approach, it would be a Pyrrhic victory for the computationalist.
Few philosophers independently believe in processes as sui generis entities.
An account of computation that posited such entities would be inherently
implausible. The aim of this thesis is to develop a notion of computation
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that has a broader appeal, a notion that relies only on standardly accepted
metaphysical notions.

The account of computation developed below is called the ‘process and
representation’ model (PR-model). The name reflects the fact that the model
defines what we mean by our computation talk in terms of processes and rep-
resentations. The PR-model is intended to formalise the two key intuitions
described in Section 3.1.2, and the account of the CTM described in Section
3.1.1. The PR-model elaborates these intuitions and this account into a more
substantial account of computation. The PR-model is designed to be custom-
isable. If one objects to a component of the model, say, its analysis of process
talk, then one can swap out that component and slide in a different analysis.
However, I shall argue that the model is an adequate analysis as it stands. The
end products of the PR-model are: (1) an account of what we mean when we
say that a system performs a computation; and (2) an account of what we mean
when we say that a system performs one computation rather than another.

The PR-model is introduced in two stages. Section 3.2 introduces the basic
terms used by the model and discusses their metaphysical commitments. The
next chapter defines the model itself in a step-by-step fashion using these basic
terms. Two points should be borne in mind.

First, the PR-model specifies what we mean by our computation talk in
quasi-formal terms. One might question why such an account need be formal at
all. Why can’t we say what we mean in plain English? The reason for adopting
a formal approach is that an account in English is likely to be misleading. For
one thing, the scope of quantifiers in English is often ambiguous. A formal
approach avoids these problems and, on balance, is likely to be more readable.
However, glosses in English are provided below.

Second, the PR-model is not the only possible account of the semantics of
computation talk. Other accounts are possible, and they could save the same
intuitions in different ways. The success of the PR-model, like that of any
semantic account, has to be judged on its intuitive appeal and its pay-offs for
other projects, such as the project of giving an account of the metaphysics of
computation. It is worth reiterating that the PR-model is only a semantic ac-
count of talk of implementation of computation. The PR-model is not a semantic
account of all computation talk. Furthermore, the PR-model is only intended
as an account of CTM-style implementation talk. We use implementation talk
in many contexts for many different ends; a general notion of implementation
may prove too heterogeneous to be captured by a single account. The PR-model
aims only to capture the semantic content of computation talk relevant to the
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CTM.11

3.2 Preliminary definitions

The PR-model defines the performance of a computation in terms of processes
and representations. In this section, accounts are given of both processes and
representations.

3.2.1 The relata of representation

Representation involves the obtaining of a relation between two things: that
which represents and that which is represented. For example, an oil painting
represents Westminster Cathedral just in case a representation relation obtains
between two things: a collection of oil marks on canvas and Westminster
Cathedral. The collection of oil marks on the canvas is that which represents,
Westminster Cathedral is that which is represented. In what follows, that which
represents shall be called a ‘representation’. Representations shall be denoted
by schematic lower case Greek letters, such as φ. In the example above, the
oil marks on canvas are a representation. The other side of the representation
relation, that which is represented, shall be called the ‘referent’ or ‘content’ of
a representation. Non-actual contents are allowed—these cases are discussed
in Section 3.2.6. The content of a representation, φ, shall be denoted as JφK. In
the example above, the content of the representation (the oil marks on canvas)
is the entity Westminster Cathedral.

3.2.2 Representation tokens

In the PR-model, a representation should be understood as a representation
token, not a representation type. Potentially anything can count as a repres-
entation token. Representations could be, depending on one’s views, objects,
events, or states of affairs. Whatever theory of representing entities one favours,
that theory can be plugged into the PR-model. The PR-model uses tokens rather
than types for two reasons. First, many philosophers regard token entities as
metaphysically less mysterious than types. Second, criteria of identity for token
entities are usually easier to come by than those for types.

The PR-model only requires two assumptions about representation tokens:
(1) representation tokens are possible; and (2) there are determinate facts about
numerical identity for representation tokens. Let us consider each assumption

11However, as we will see in Chapter 5, the PR-model can be applied to some areas of computation
talk outside the CTM.
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in turn. The first assumption is widely accepted. Most philosophers agree that
there can be entities in the world that represent, even if they disagree about the
nature of those entities and the nature of the representation relation. For the
most part of this discussion, I shall simply assume that this assumption is true.
For those philosophers who disagree, Section 3.2.8 suggests a way in which the
PR-model might still be of use.

The second assumption is that there are determinate facts about numerical
identity for representation tokens. This again is widely accepted. An argument
for this assumption is given in Section 3.2.5. It is sufficient here to note that
although there is often disagreement about the conditions of numerical identity
for token entities, there is often agreement that there are determinate facts
about such identity. No matter whether one favours objects, events, or states
of affairs, one will almost certainly wish to say that there are determinate facts
about numerical identity for those entities. The concern here is broader than the
notion of computation. If one does not admit facts about numerical identity for
token entities, then it is hard to see how they could be put to useful metaphysical
work. It would not be determinate how many such entities existed, and this
would have consequences for such metaphysical features as persisting through
time, having parts, or being a cause. Each of these metaphysical features is
sensitive to facts about the numerical identity of the underlying entities.

One should distinguish strict numerical identity from looser and more idio-
matic notions of identity. The definitions below are intended to employ only
strict numerical identity. One might wish to weaken the position by allowing
weaker identity relations. For example, one might wish to say that two photo-
graphs are identical just in case the two photographs look exactly alike. This
fits with our everyday talk: one might say that there are two identical photo-
graphs on different pages of a photograph album. However, this weaker kind
of identity relation, being the same photograph, is not strict numerical identity. No
matter how similar two photographs are, they are still two numerically distinct
objects. It is only the notion of strict and unrelativised numerical identity that
is at issue in the PR-model.12

12Geach (1980) denies that a strict notion of unrelativised identity is possible. I assume, along
with Armstrong (1997), 14–16, that Geach is wrong. However, even if Geach is correct, a notion
of computation could perhaps still be developed along the lines below. This could be done if an
appropriate notion of relative identity can be selected. Alternatively, if as seems likely, there is
no single correct notion of relative identity for representation tokens, then the entire account of
computation could be indexed to a notion of relative identity, determinable by context or other
factors.
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3.2.3 The representation relation

We have seen that the PR-model is neutral about the nature of representation
tokens. The PR-model is also neutral about the nature of representation rela-
tions. There may be more than one kind of metaphysical relation that underlies
representation. Some theories of representation claim that there are naturalistic
representation relations (e.g. Fodor (1990a)), others claim that representation
relations are non-naturalistic (e.g. Davidson (1984)). When we come to con-
sider the metaphysics of computation, these differences will matter a great
deal. However, in the current context they can be ignored. All that matters to
the PR-model is that a representation relation obtains, i.e. that a representation
token is paired with a referent. The details of how this relation obtains are not
important.

The PR-model involves the assumption that each representation token rep-
resents exactly one thing. There are two worries one might have about this
assumption. The first is that there seem to be cases in which a token does
represent more than one thing. For example, a photograph of Westminster
Cathedral might represent Westminster Cathedral, the seat of an archbishop, and
cathedrals in general. The second worry is that it is sometimes indeterminate
which thing a token represents. For example, a fuzzy photograph may not rep-
resent any one particular thing determinately at all. Let us consider each worry
in turn.

The first worry—that a representation token can represent more than one
thing—-can be addressed in the following way. Instead of defining computa-
tion simpliciter, we can define computation indexed to unambiguous represent-
ational content. Collect those things that a representation token represents into
a set.13 Call an ‘interpretation’ of a token, a selection of a single member from
that set. Call an ‘interpretation function’ of a set of representation tokens, an
interpretation of each token in that set. Relative to an interpretation function,
a single referent is associated with each representation token. Therefore, if an
interpretation function is applied to a set of tokens, then we are guaranteed
that each token represents exactly one thing. Hence, we can talk of whether
that process qualifies as computational under an interpretation function.

Definition 3.1. I is an interpretation function for a set of representation tokens
Φ = {φ1, φ2, . . . , φn} iff for each φi ∈ Φ, I associates exactly one referent with
each φi. The referent of φi under I is denoted JφiKI.

It should be noted that interpretation functions do not carry a commitment
to an ‘interpreter’ or introduce representation relations where there were none

13That the possible referents form a set is guaranteed by the assumption, discussed in Section
3.2.4, that there are determinate facts about numerical identity for referents.
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before. An interpretation function is a way of talking about patterns of pre-
existing representation relations. Interpretation functions do not ‘produce’ new
representation relations. When we say that a system performs a computation
under an interpretation function, all that we mean is that given that each
token involved, φi represents JφiKI—which, inter alia, it does—then that system
performs a computation.

Computations can be realised in many different physical systems. The same
computation can be performed by a system made out of silicon and a system
made out of tin-cans and string. Conversely, the same system can perform
many different computations. As mentioned in Section 3.1.2, one way for this
to happen is if the tokens involved represent more than one thing. If a system
has multiple representational content then it has the potential for multiple
computational identities. The notion of an interpretation function provides a
useful way to talk about such cases. We can say that a single system performs
different computations under different interpretation functions. This seems a
more natural way to treat these cases than to say, for example, that such systems
perform a single computation with ambiguous representational content.

What about everyday talk of computation, which does not contain any
reference to interpretation functions? A notion of computation simpliciter can
be defined in terms of the notion of computation relative to an interpretation
function. A system performs a computation simpliciter just in case it performs
a computation under at least one interpretation function. In what follows, we
shall only focus on cases of computation relative to an interpretation function.
The extension of the results to the notion of computation simpliciter is trivial.

The second worry is that it is not determinate whether certain representation
tokens represent certain entities or not. Here is an example. An OR gate takes
voltages as input and yields voltages as output. Suppose that a voltage signal of
5 V represents 1, and a voltage signal of 0 V represents 0. Real-world electrical
signals rarely take exactly integer values; it is possible for a signal to deviate
from 5 V in many ways. Therefore, we should modify our representational
conventions by, for example, requiring that signals of 5 ± 0.4 V represent 1,
and signals of 0 ± 0.4 V represent 0. However, this assumes that we are able
to choose a sharp cut-off point, such as ±0.4 V. Typically, an OR gate will not
have a sharp cut-off point in its behaviour. Do we wish to introduce a sharp
cut-off in its representational content? What if the OR gate responds correctly
to inputs slightly outside the ±0.4 V range? Do we wish to say that a signal
of 4.599999999 V does not represent 1 even though it differs from a signal that
does represent 1 by a minute amount?

Two options are possible. One is to insist on a sharp-cut off. The other is to
accept vagueness in whether signals represent or not. On the latter view, it is
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indeterminate whether a signal of 4.599999999 V represents 1 or not. Electrical
engineers generally employ only the first option in their conventions. The
alternative—that signals with indeterminate content could occur—would make
it difficult to predict the function computed.14 Nevertheless, it is conceivable
that tokens could occur for which it is vague whether they represent an entity
JφiKI or not: we might choose to adopt a representational scheme that satisfies
the second option. What should we say about such cases?

I believe we should say that in such cases the identity of the computation
itself is vague, and it is vague to the extent that its underlying representational
content is vague. The respect in which representational vagueness transmits
to computational identity will depend on the respects in which computational
identity depends on representational content. A detailed description of this
relation is given in the PR-model. For the most part of the discussion be-
low however, like the electrical engineers, we shall assume that representation
tokens either clearly represent or do not represent a referent. Extending the
discussion to the vague cases is not hard.15

3.2.4 Representational contents

As already mentioned, the PR-model is neutral concerning the nature of repres-
entation tokens. Potentially any entity can qualify as a representation token; the
ultimate nature of representation tokens depends on one’s general metaphys-
ical views. The PR-model is similarly neutral about the nature of the referents.
Potentially any entity can qualify as the referent of a representation token. Only
one restriction is placed on referents: that there are determinate facts about nu-
merical identity for such entities. For any two referents, JφKI, JψKI, it must be
determinate whether JφKI = JψKI or JφKI , JψKI. Provided that this assumption
is met, potentially anything can count as a referent. Representation tokens are
allowed to represent anything, including themselves.

The notion of representational content is intended to be understood in this
context purely extensionally. Whether two representation tokens have the same
content depends only whether the referents of those tokens are numerically
identical, not on the way in which those entities are referred to. For example,
we can say that J‘The morning star’KI = J‘The evening star’KI, even though the
two tokens represent their referent in different ways.

14See Horowitz and Hill (1989), 473.
15Note that although the preceding example of the OR gate deals with a case in which it is vague

whether a token represents or not, the same argument applies to cases in which it is vague whether
a token represents one entity rather than another.
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3.2.5 Determinate numerical identity relations

The PR-model requires determinate numerical identity relations between rep-
resentation tokens and between representational contents. For any two tokens
φ and ψ, it must be determinate whether φ = ψ and whether JφKI = JψKI. If φ
and ψ have clear numerical identity conditions, then it will be clear whether
such a numerical identity relation obtains. For example, if φ and ψ represent
numbers, then it will be clear whether JφKI = JψKI or JφKI , JψKI, since numbers
have clear numerical identity conditions. Similarly, if φ and ψ represent nu-
merals, then it will be clear whether JφKI = JψKI or JφKI , JψKI, since numerals
have clear numerical identity conditions. In cases like these, the conditions
above (at least regarding representational content) are clearly satisfied, and the
PR-model can be applied without question. However, in cases in which the
relevant entities do not have clear identity conditions, the determinacy of the
identity relation, and therefore the applicability of the PR-model, may appear
under threat. Many of the entities with which we are familiar have unclear
numerical identity conditions. Therefore, a possible objection to the PR-model
is that these entities cannot qualify as representation tokens or representational
contents, and so cannot participate in real-world computation. Hence, accord-
ing to the PR-model, many intuitive cases of computation do not count as
computation. In this section, I argue that this objection is mistaken. The PR-
model is compatible with computation with entities that have unclear identity
conditions.

Lack of clarity about identity conditions can arise for one of three reasons.
First, ignorance: the identity conditions of an entity may be unclear because
we are ignorant of its identity conditions. Second, semantic indeterminacy:
the identity conditions of an entity may be unclear because it is vague or inde-
terminate which entity we are referring to. Third, metaphysical indeterminacy:
the identity conditions of an entity may be unclear because it is in fact inde-
terminate whether that entity is numerically identical to another entity or not.
Only the final source of lack of clarity in identity conditions is a problem for
the PR-model. In that case, the identity conditions are unclear because there
really are no determinate facts about numerical identity. This violates the condition
above for application of the PR-model. I suggest that there are good reasons for
thinking that such cases do not occur. We can attribute lack of clarity in identity
conditions to sources other than metaphysical indeterminacy. If lack of clar-
ity in identity conditions is due only to ignorance or semantic indeterminacy,
then such lack of clarity poses no threat to the applicability of the PR-model to
real-world computation.

Let us consider each potential source of lack of clarity in turn.
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First, ignorance. We are ignorant of the identity conditions of many entities.
Conditions of numerical identity are often a matter of philosophical or natural
scientific enquiry.16 An example of an entity whose identity conditions have
been a matter of philosophical enquiry is the ship of Theseus. Let the repres-
entation token φ represent the original ship of Theseus. Let the representation
token ψ1 represent the ship that is the result of gradually replacing every plank
in the original ship. Let the representation token ψ2 represent the ship that is
constructed out of the planks that were removed from the original ship. Does
JφKI = Jψ1KI or JφKI = Jψ2KI?17 The answer is unclear. One might argue that this
lack of clarity is not due to any indeterminacy in the identity relation itself, or in
the reference of the term ‘ship’, but to ignorance on our part. A possible, albeit
controversial, position on such identity statements is that such statements are
unclear simply because we lack epistemic access to their truth value.

Second, semantic indeterminacy. Quine (1980a) claims that identity state-
ments such as those concerning the ship of Theseus have unclear truth value,
not because of any epistemic limitation on our part, but because of semantic
indeterminacy inherent in our talk of ships. According to Quine, ships are ag-
gregates of atoms. The representation φ could refer to any one of two distinct
aggregates, each of which is broadly ship-shaped. As far as the problem has
been stated, it is indeterminate to which of these two aggregates the tokens
refer. This semantic indeterminacy need not be accompanied by metaphysical
indeterminacy. Quine, for one, claims that whether two entities in the world
are numerically identical is determinate, even though it may be indeterminate
which of these entities we refer to.

Finally, metaphysical indeterminacy. On this view, our terms refer, but they
refer to vague objects. Vague objects are objects for which it is indeterminate
whether or not they are identical to each other or to anything else. Evans
(1978) and Salmon (1981) have argued against the possibility of vague objects.18

Briefly, their argument is as follows. Suppose that an entity, a is b. Trivially, b
is such that it is determinately true that it is b. By Leibniz’s Law, a has every
property b has, so a is such that it is determinately true that it is b. Therefore, if
our original assumption is correct, i.e. if a is b, then it is determinately true that a
is b. Taking the contrapositive of the above conditional, if it is not determinately
true that a is b then a is not b. The defender of vague objects believes that for
some a and b, it is not determinately true that a is b. However, she refuses to
assert the consequent of the conditional: that a is not b. Therefore, her position

16See Noonan (2003) on the conditions of personal identity as a matter of philosophical enquiry.
See Putnam (1975a) on the identity conditions of natural kinds as a matter of scientific enquiry.

17Molesworth (1845), Part 2, Ch. 2, 135.
18The argument is clarified and defended in Lewis (1988); Salmon (1986); Stalnaker (1988);

Wiggins (1986).
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is logically incoherent.19

Vague objects are also objectionable for a methodological reason. A philo-
sopher who posits vague objects not only needs to show that they are possible,
but also that they are necessary for doing useful metaphysical work. A plaus-
ible default assumption is that vague objects do not exist. A defender of vague
objects has to overturn this assumption; she has to show that vague objects are
needed to accommodate features of the world that cannot be accommodated
in any other way. She faces an uphill struggle in this task. Even if Evans
and Salmon are incorrect, there seems no compelling reason for positing vague
objects.

Let us assume that Evans and Salmon are correct. Therefore, ignorance and
semantic indeterminacy are the only sources of unclear identity conditions. Un-
der this situation, as discussed above, entities with unclear identity conditions
pose no threat to the applicability of the PR-model.

3.2.6 Non-actual tokens and contents

Another possible objection to the PR-model concerns non-actual tokens and
content. The problem is that it is not clear how there could be determinate facts
about numerical identity for non-actual entities. Quine expresses this worry:

Take, for instance, the possible fat man in that doorway; and, again,
the possible bald man in that doorway. Are they the same possible
man, or two possible men? How do we decide? How many possible
men are there in that doorway? Are there more possible thin ones
than fat ones? How many of them are alike? Or would their being
alike make them one? Are no two possible things alike? Is this the
same as saying that it is impossible for two things to be alike? Or,
finally, is the concept of identity simply inapplicable to unactualized
possibles? (Quine, 1980b, 4)

If there are no determinate facts about numerical identity for non-actual entities
then, according to the PR-model, such entities cannot participate in computa-
tions.

A possible response to this worry is to limit the PR-model to cover only
actual entities. Unfortunately, this does serious damage to our intuitions about
computation. This damage occurs in two ways. First, it seems essential to our
notion of computation that even if, as a matter of contingent fact, certain tokens
never occur, a process would have behaved in a suitable way if those tokens
were to have occurred. Second, there seems to be no reason why there cannot be

19This version of the argument is adapted from the helpful summary of Williamson (1990).
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computations with tokens that represent non-actual entities—there seems no
reason why there cannot be computations about Sherlock Holmes or a talking
donkey.

A different way to deal with the problem is to claim that non-actual entities
are ontologically on a par with actual entities, and hence have identity condi-
tions that are just as determinate. Lewis (1986b) claims that non-actual entities
are real in this way. For Lewis, the problem described above does not arise:
relations of numerical identity for non-actual entities are just as determinate
as those for actual entities. On Lewis’s view, the indeterminacy that Quine
indicates above is only semantic indeterminacy: the identity of the fat man in
the doorway is unclear because it is unclear which non-actual fat man Quine is
referring to. The referent of Quine’s expression is indeterminate in the same
way as the referent of ‘the British person in the room’ is indeterminate if used
without further information in a room full of British people.

Many philosophers try to steer an intermediate course between Quine’s ac-
tualism and Lewis’s realism about non-actual entities. Typically, these positions
claim that non-actual entities are real, and therefore have determinate identity
conditions, but that their nature is different from that of actual entities. If these
theories can be made to work, then they would allow the PR-model to em-
ploy non-actual entities without incurring Lewis’s metaphysical commitments.
Here is a summary of current approaches.

Plantinga (1974) claims that possible worlds are abstract objects called max-
imally consistent states of affairs. All possible states of affairs exist, but only one,
the actual world, obtains. Non-actual objects can be accommodated by adding
individual essences. Individual essences are properties, such as being identical
to Socrates, that all and only objects that are numerically identical share. Ac-
cording to Plantinga, individual essences can exist uninstantiated. Therefore,
individual essences can play the role of non-actual objects. Stalnaker (1976)
claims that possible worlds are uninstantiated properties. On Stalnaker’s view,
properties can be structured, and so properties can again play the role of non-
actual objects. Another theory is that possible worlds are maximally consistent
sets of sentences. On this approach, non-actual objects are names in the lan-
guage in which the sentences are expressed. These names may themselves
be abstract objects, such as sets. Another approach is modal fictionalism. On
Rosen’s (1990) fictionalist theory, modal claims are true or false depending on
whether they are true or false according to Lewis’s theory, although Lewis’s
theory is assumed to be false. If modal fictionalism is correct, then identity
statements in the PR-model are disguised statements about Lewis’s fiction. A
statement about two non-actual entities being numerically identical is true just
in case it is true in the fiction of Lewis’s theory that the two non-actual entities
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are numerically identical. The success of these various approaches is unclear.
Non-actual entities are an outstanding problem in metaphysics. In what fol-
lows, it will be assumed that determinate facts about numerical identity for
non-actual entities can be secured somehow.

It is worth emphasising that facts about numerical identity for non-actual
entities is not just a problem for the PR-model. Any theory that quantifies
over non-actual entities faces the same problem. For example, possible world
semantics often assume the existence of a set, D, the domain of all individuals.
This set contains all possible individuals in all worlds.20 The members of a
set must, by definition, be numerically distinct. Therefore, the possibility of
forming such a set D depends on there being determinate facts about numerical
identity for non-actual individuals. Determinate facts about numerical identity
are also required by metaphysical theories. Current theories of causation,
supervenience, and persistence, depend on such numerical identity relations.21

3.2.7 Processes

As well as using the notion of representation, the PR-model also uses the notion
of a process. For the purposes of the PR-model, what meant by a ‘process’ can
be captured by a list of counterfactual conditionals concerning tokens. Note
that this model of processes is intended only to apply to processes in the context
of computation talk. There are many other contexts in which the word ‘process’
is used that cannot be treated in this way.

Domains and ranges of processes

A process has an associated domain Φ = {φ1, φ2, . . . , φn}, and range Ψ =
{ψ1, ψ2, . . . , ψm}. The domain and range of a process are sets of representa-
tion tokens. These sets of tokens may be finite or infinite. The domain and
range may overlap, and may even be the same set. A process should be un-
derstood as performing a mapping from tokens in its domain to tokens in its
range: if a certain token φ from its domain is presented to a process, then after
a finite amount of time the process yields a token ψ from its range. The condi-
tional underlying the mapping should be understood as having counterfactual
force: if a token φ from the domain were to be presented to a process, then
after a finite amount of time the process would yield a token ψ from its range.
As discussed in Section 3.2.2, tokens can be anything: objects, events, states of
affairs—whatever one thinks exists. An example of a real-world process is a

20See Lewis (1970b); Montague (1974).
21See Lewis (1986b), Ch. 1 for an overview of areas in which determinate numerical identity

relations are required for non-actual entities.
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NOT gate. A NOT gate maps signals of 0 V to signals of 5 V, and signals of 5 V
to signals of 0 V.22

Definition of process—first attempt

If we wish to define a process, it is not enough to specify that process’s domain
and range. We also need to specify the dependency relations between the
members of its domain and range. We need to say which inputs yield which
outputs. In order to characterise this pattern of dependency relations, let us
associate a set of ordered pairs, Ω, with each process. For every pair of tokens
(φ,ψ) ∈ Ω, the following is true: if φ were presented as input to the process,
then the process would yield ψ as output.

Let us make a first attempt at an account of process talk. Let us say that
P(Ω) is a process just in case for each (φi, ψi) in Ω:

If φ1 were presented as input, then ψ1 would be yielded as output.

If φ2 were presented as input, then ψ2 would be yielded as output.

If φ3 were presented as input, then ψ3 would be yielded as output.
.
.
.

Perhaps additional counterfactuals are needed to characterise a process.
The above series stipulates that if φ1 were presented, then ψ1 would be yielded
as output. Should we also require that if φ1 were not presented, then ψ1 would
not be yielded as output? According to Lewis (1970a), a pair of positive and
negative counterfactuals is needed in order to characterise causal dependence.
In order for B to causally depend on A, it must be that: (i) if A were to occur then
B would occur, and (ii) if A were not to occur then B would not occur. However,
a pair of positive and negative counterfactuals is not needed to characterise
what we mean by a process. The series of positive counterfactuals given above
is sufficient.

Consider a NOT gate. If 5 V is presented as input to the NOT gate, then it
yields 0 V as output. If 0 V is presented as input to the NOT gate, then it yields
5 V as output. Suppose that the input to the NOT gate is neither 0 V nor 5 V. Why
should we intend anything about its output? Typically, we not do not. These
situations are given the technical name of ‘don’t cares’ by electrical engineers.23

The negative counterfactual conditional can also be violated in another way. A

22Whether these inputs and outputs are events or instantiations of properties depends on the
correct account of the metaphysics of electrical signals.

23Hayes (1993), 308–309.
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process may associate two different input tokens φ1, φ2 with the same output
token ψ. Therefore, if φ1 were presented as input, then ψ would be yielded as
output. However, the corresponding negative counterfactual conditional—if
φ1 were not presented, then ψ would not be yielded as output—is false, since
φ2 might have been presented and ψ yielded. Therefore, a negative series of
counterfactuals is not needed.

We can therefore conclude that process-like dependence is weaker than
causal dependence—at least on Lewis’s (1970a) analysis of causal dependence.
For Lewis, lack of causal dependence is no bar to a relation being causal.24

However, even this condition need not be true of processes. In some cases, the
input to a process may cause its output. In other cases, the input may not cause
the output but the two may counterfactually covary due to a common cause.
In yet other cases, the relation linking input to output may be entirely non-
causal. For example, the relation could be that of part to whole, or a functional
law-like relation such as that relating pressure and volume of a gas at constant
temperature. Potentially any counterfactual supporting regularity will do.

Presenting input and yielding output

The definition above used the terms ‘presented’ and ‘yielded’. What does it
mean for a token to be presented to a process or yielded by a process? One way
of fleshing out these notions is in terms of spatiotemporal regions. If a token is
presented to a process, then that token occurs at a certain time and at a certain
location. Similarly, if a token is yielded by a process, then that token occurs at
a certain time and at a location. The converse is also true. If a token occurs at a
certain time and location associated with a process, then that token is presented
to that process. Similarly, if a token occurs at a time and location associated
with a process, then that token is yielded by that process. I suggest that talk
of presentation and yielding can be captured in terms of talk of spatiotemporal
regions. We can say that a token is ‘presented’ to a process just in case that token
occurs in a certain spatiotemporal region A associated with the process—call
this the ‘input region’ of the process. We can say that a token is ‘yielded’ by
a process just in case that token occurs in a certain spatiotemporal region B
associated with the process—call this the ‘output region’ of the process.25

In addition to providing an account what we mean by presentation and
yielding, this approach also allows us to make sense of the idea that processes
are spatiotemporally located. For example, it is conceivable that two AND gates
could be perfect physical duplicates. These AND gates can be distinguished

24On Lewis’s view, A causes B provided there is a chain of causally dependent events between
A and B, and even if B is not itself causally dependent on A. See Lewis (1970a).

25All conditions should be understood as stated tenselessly.
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by their spatial location. One AND gate may be located inside my desktop
computer and be sensitive to a certain spatiotemporal region. The other AND
gate may be located inside the Mars Pathfinder probe and be sensitive to a
different spatiotemporal region. Both AND gates share the same I/O behaviour
Ω, but they operate on different spatiotemporal regions.

There is no restriction on the shape of the input or output regions. The input
and output regions may overlap with each other, either partially or entirely,
and they may not be internally connected or continuous. The input and output
regions of one process may overlap, either partially or entirely, with the input
and output regions of another process.

We can revise the definition above by replacing ‘presented’ and ‘yielded’
with conditions involving spatiotemporal regions. On the revised definition,
a process is characterised by a triple (Ω,A,B): a set of I/O pairs Ω, an input
region A, and an output region B. Let us say that P (Ω,A,B) is a process just in
case for each (φi, ψi) in Ω:

If φ1 were to occur in region A, then ψ1 would occur in region B.

If φ2 were to occur in region A, then ψ2 would occur in region B.

If φ3 were to occur in region A, then ψ3 would occur in region B.
.
.
.

The revised definition employs the term ‘occurs’ as a primitive predicate.
This term should be understood as a placeholder: it is to be replaced by the
term appropriate to the tokens in question. That term will vary depending
on one’s view of tokens. If one believes that tokens are objects, then ‘occurs’,
should be replaced by ‘is present’; if states of affairs, then ‘obtains’; if events,
then ‘occurs’ need not be changed; and so on. The predicate ‘occurs’ marks
the place of whatever predicate is most appropriate to the metaphysics of the
tokens in question.

Definition of process—second attempt

The definition is still not unsatisfactory. We need to add three more conditions
in order to capture the required notion of a process.

First, we need to add the requirement that the output of a process occurs
some finite time after its input. The output should not occur before, or sim-
ultaneously with, the input, and it should not be delayed indefinitely. There
should be a characteristic time delay associated with each I/O pair. If an input
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token φ is presented to a process P, then an output token ψ should be yielded
after some finite time t. It is conceivable that two processes could have the
same set of I/O pairs, be sensitive to the same spatiotemporal regions, and yet
differ in their time delays—one process could be fast and the other slow. The
definition above needs to be modified to accommodate such time delays. This
can be done by redefining the setΩ. Instead of definingΩ as the set of I/O pairs
(φ,ψ), we can define Ω as a set of ordered triples (φ,ψ, t), where t is the time
delay associated with φ and ψ. The definition above can then be modified: P
(Ω,A,B) is a process just in case for each (φi, ψi, ti) in Ω, if φi were to occur in
region A, then ψi would occur in region B time ti after φi.

Second, the definition fails to capture the correct modal relations between
input and output. This is easiest to see in the case of actual tokens. Imagine
that two tokens φ1, φ2 actually occur in the input region A of a process at times
t1 and t2 respectively, and that ψ actually occurs in the output region B at
time t3. For the sake of argument, assume that Lewis (1973) is correct that a
counterfactual is true if both its antecedent and consequent are true. Therefore,
the following counterfactuals are true: (i) If φ1 were to occur in region A, thenψ
would occur in region B; and (ii) If φ2 were to occur in region A, then ψ would
occur in region B. Hence, according to the definition above, we have a process
P ({(φ1, ψ, t3 − t1), (φ2, ψ, t3 − t2)},A,B).

Now suppose that additional information is provided. The additional in-
formation is that if φ2 were to occur alone (without φ1), then ψwould not have
occurred. The token ψ only occurred because φ1 was present. Therefore, al-
though the counterfactual ‘If φ2 were given as input, then ψ would be yielded
as output’ is true, it is only true because of the extraneous presence of φ1 in the
actual world. If φ1 were absent, then there would have been no ψ. Intuitively,
even though the definition above is satisfied, the link between φ2 with ψ is not
process-like.

The definition can be modified to handle these cases. This can be done by
requiring that a process-like dependency between φ and ψ obtain only if the
counterfactual holds no matter what other tokens occur in the input spatiotemporal
region. A process-like dependency between φ and ψ only obtains if, given that
φ occurs in region A, then no matter what other tokens might be in A before
or after φ, ψ would occur in region B a time t after φ. This clause need only
consider tokens that occur before or after φ, because the behaviour of processes
is typically undefined for input tokens that are presented simultaneously.

One might wonder whether a similar problem arises for entities that are not
tokens of the domain. For example, suppose that φ1 were to yield ψ only if
an extra entity α were present too. If α were not present, then φ1 would not
yield ψ. Such cases can be dealt in one of two ways. Either α and φ1 can be
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classified together as a joint input token. Or, if α is needed for a wide variety
of input tokens, then α can be treated as part of the background conditions for
the process to exist at all. Certain background conditions need to be satisfied in
order for a process to exist. For example, the Big Bang needs to have occurred,
and the local environment needs to be favourable for the dependencies involved
in the process. What is involved in satisfying these conditions is not rightly
speaking part of that process’s input. Background conditions are preconditions
for the counterfactual dependencies involved in the process to obtain at all.
Sensitivity to background conditions is a feature common to all counterfactual
conditionals; it is not problem specific to processes. As such, it should be
dealt with by one’s account of counterfactual conditionals, not by a theory of
processes.

The final condition is that a process should be deterministic. A process
is deterministic just in case each token in the domain is paired with a single
token in the range. Determinacy is not a conceptual necessity for processes:
it is easy to imagine processes that are not deterministic. However, for the
sake of simplicity in what follows we shall restrict discussion to deterministic
processes. The definition above can be modified to include this restriction. This
can be done by specifying that the same input token always yields the same
output token with the same time delay: ∀(φ,ψ, t), (φ,ψ′, t′) ∈ Ω, ψ′ = ψ and
t′ = t.

We can now give the final definition of a process. P (Ω,A,B) is a process just
in case ∀(φ,ψ, t), (φ,ψ′, t′) ∈ Ω, ψ′ = ψ and t′ = t, and for each (φi, ψi, ti) in Ω:

If φ1 were to occur in region A, then no matter what other φ might be in
A before or after φ1, ψ1 would occur in region B time t1 after φ1.

If φ2 were to occur in region A, then no matter what other φ might be in
A before or after φ2, ψ2 would occur in region B time t2 after φ2.

If φ3 were to occur in region A, then no matter what other φ might be in
A before or after φ3, ψ3 would occur in region B time t3 after φ3.
.
.
.

This definition can be collapsed to a single condition:

Definition 3.2. P (Ω,A,B) is a process iff ∀(φ,ψ, t) ∈ Ω, if φ were to occur in
region A, then no matter what other φ′ might be in A before or after φ, ψwould
occur in region B time t afterφ. Furthermore, we shall assume that all processes
are deterministic: ∀(φ,ψ, t), (φ,ψ′, t′) ∈ Ω, ψ′ = ψ and t′ = t.
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This definition provides an account of processes in terms of tokens, coun-
terfactual dependence, and spatiotemporal regions. This is the definition that
we shall work with in the PR-model.

Final remarks

The domain and the range of a process can be defined in terms of Ω:

Definition 3.3. If P (Ω,A,B) is a process then:

• The domain Φ of P = {φ : (φ,ψ, t) ∈ Ω}

• The rangeΨ of P = {ψ : (φ,ψ, t) ∈ Ω}

Two extra conventions are adopted in subsequent chapters. First, if P
(Ω,A,B) is a process then we shall say that P is a ‘mapping’ from a domain
Φ to a range Ψ. This shall be symbolised: Φ 7→ Ψ. Second, if a process pairs
a particular input token φ with a particular output token ψ, then we shall say
that the process ‘yieldsψ if presented withφ’. This shall be symbolised: φ `P ψ.
The `-relation is defined: if P (Ω,A,B) is a process then φ `P ψ iff ∃t such that
(φ,ψ, t) ∈ Ω.26

3.2.8 Extreme positions

The preceding sections have assumed: (1) representation tokens and relations
are possible; (2) numerical identity relations between representation tokens
and their content are determinate; (3) non-actual entities can be representation
tokens or contents; and (4) counterfactual dependence relations exist. These
are all widely tolerated assumptions, at least within a broadly realist frame-
work. But what if one denies them, can one still make sense of computation in
terms of the PR-model? An initial reaction might be that computation must be
understood in some other way. However, this would be too hasty. Even if an
anti-realist denies these assumptions, she still has to make sense of the fact that
we often talk as if they were true. For example, an anti-realist who denies that
representation is possible still has to make sense of the fact that we have a rich
and varied representation talk. Provided she acknowledges this challenge, the
anti-realist can make use of the PR-model suitably interpreted. She can appeal
to the PR-model to give a semantic account of our computation talk, but instead
of treating the terms of the PR-model as basic, she can give a further account
of what is meant by representation, identity, and counterfactual dependence

26The turnstile symbol (‘`’) is intended to be suggestive of proof-theoretic entailment. However,
the `-relation is not proof-theoretic entailment. Proof-theoretic entailment is an abstract relation
between expressions in a formal language. The `-relation is a counterfactual dependence relation
between real-world entities.
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that is compatible with her anti-realist metaphysics. Although the PR-model
comports well with realism about computation, PR-model semantics need not
be barred to the anti-realist.



Chapter 4

The PR-model

The PR-model provides an account of what we mean by our computation talk
in terms of processes and representations. According to the PR-model, when
we say that something is a computation, what we mean that a particular kind
of process is in operation. That kind of process is representational. Representa-
tional processes take representation tokens as input, yield representation tokens
as output, and their I/O pattern preserves representational content. Computa-
tional processes are a type of representational process: not all representational
processes are computational, but all computational processes are representa-
tional. For convenience, I shall use the term ‘computation’ interchangeably
with ‘computational process’. Sections 4.2 to 4.3 specify the conditions for a
representational process to qualify as a computational process.

4.1 Representational processes

A representational process P is defined as follows:

Definition 4.1. P (Ω,A,B): Φ 7→ Ψ is a representational process under inter-
pretation function I iff P is a process and:

1. Each φ ∈ Φ and ψ ∈ Ψ represents at least one thing, and out of those
things, interpretation function I picks out exactly one referent JφKI or JψKI

for each φ ∈ Φ and ψ ∈ Ψ.

2. ∀φ,φ′ ∈ Φ, if φ `P ψ and φ′ `P ψ′ and Jφ′KI = JφKI, then Jψ′KI = JψKI.

A representational process maps representation tokens to representation tokens
in a way that preserves relations between representational content. Condition
(1) of Definition 4.1 states that the input and output tokens of a representational
process have representational content. An interpretation function guarantees

95
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unambiguous content for each token. Condition (2) of Definition 4.1 states that a
representational process preserves relations between representational content.
If two input tokensφ,φ′ represent the same thing, then their two corresponding
output tokens also share their respective representational content.

Many cognitive processes are representational processes. For example, the
process of syntax parsing is a representational process. Plausibly, the inputs and
outputs of a syntax parsing process are electrical or chemical signals inside the
brain. However, whatever the physical nature of those signals they must have
representational content: the input must represent a stream of phonemes, and
the output must represent a grammatically parsed sentence. If the inputs and
outputs do not represent, then it is difficult to see how the elements of syntax
parsing—phonemes and grammatical structures—can even be introduced into
a system of neurons and chemicals. The physical nature of the inputs and
output signals may vary slightly on different occasions. For example, it might
be that the firing rate of certain neurons can vary within certain limits, or
the concentration of a neurotransmitter can vary within certain tolerances.
However, it is generally assumed that whatever physical variation there is, if
two input signals represent the same thing—the same stream of phonemes—
then the two output signals of the process must represent the same thing—the
same grammatical structure.1 If this condition is not met, then the process does
not perform syntax parsing as conventionally understood. Therefore, syntax
parsing satisfies the conditions above for being a representational process. The
same argument applies to other cognitive processes.

One might wonder how it is possible for a physical process to satisfy con-
dition (2) of Definition 4.1. How can a physical process be sensitive to the
representational content of its input? As we saw in Section 3.1.1, computation
provides an answer. Computational processes are sensitive to the representa-
tional content of their input by being sensitive to formal features that covary
with that representational content. Therefore, computation provides a way in
which condition (2) can be satisfied. In other words, computation provides a
way in which representational processes are possible. The rest of this chapter
specifies what it means for a process to be computational.

4.2 Unary computational processes

For the moment, let us restrict attention to processes that take single tokens as
input and yield single tokens as output. Call these processes ‘unary processes’.

1Provided that the cognitive process is operating correctly and the nature of the process itself is
not modified across the two inputs.
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In Section 4.3, the model is generalised to processes with multiple inputs and
outputs. A unary computational process is defined as follows:

Definition 4.2. P (Ω,A,B) is a unary computational process under interpreta-
tion function I iff there are a finite number of unary representational processes
p1, . . . , pn under I such that:

1. p1, . . . , pn span process P.

2. p1, . . . , pn are simple processes.

3. Each pi operates on structured representations under I.

Definition 4.2 employs three special terms: ‘span’, ‘simple process’, and ‘struc-
tured representation’. Each of these terms requires further definition. Sections
4.2.1 to 4.2.4 provide these definitions.

4.2.1 Spanning

Processes p1, . . . , pn span a process P just in case P is ‘made up’ from p1, . . . , pn in
the intuitive sense suggested in Section 3.1.1. The notion of spanning is intended
to provide a definition for the notion of being ‘made up’ from. A collection of
unary process p1, . . . , pn span a process P just in case four requirements are met.
First, the input region of p1 coincides with the input region of P. Second, the
output region of pn coincides with the output region of P. Third, the output
region of each pi (except pn) is contained within the input region of pi+1. Fourth,
if a process pi (except pn) yields a token ψ as output, then that token is the
input token to the next process pi+1, with the time delays of the overall process
respecting the time delays of the intermediate processes. A number of minor
extra conditions are also required. These conditions are fully described by
Definitions 4.3 to 4.4 below.

Let us define an operator, denoted ‘◦’, that joins two processes to form a
larger process. This joining operator is defined as follows:

Definition 4.3. P = Q ◦ R iff P,Q,R are processes and:

1. P (Ω,A,D) : Φ 7→ Ψ, Q (Ω1,A,B) : Φ 7→ Θ, R (Ω2,C,D) : Γ 7→ Ψ

2. Θ ⊂ Γ and region B is entirely contained in region C

3. ∀(φ,ψ, t) ∈ Ω, ∃(φ, θ, t1) ∈ Ω1,∃(θ,ψ, t2) ∈ Ω2, such that t = t1 + t2.

The first condition of Definition 4.3 states that the input region of Q coincides
with the input region of P, and that the output region of R coincides with the
output region of P. The second condition states that the range of Q is a subset
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Figure 4.1: An illustration of a process, P, being spanned by two subprocesses,
Q,R. The x, y axes represent spatial dimensions and the t axis represents time.
Input and output spatiotemporal regions are marked as ringed sections. The
upper and lower diagrams describe the same block of spacetime, showing
P = Q ◦R. An example input token φ, output token ψ, and intermediary token
θ are shown, along with their respect time delays, tθ, tψ.

of the domain of R, and that the output region of Q is contained within the
input region of R. The third condition states that for any I/O triple (φ,ψ, t) of
P: if φ were presented to Q, then an intermediate token θ would be yielded by
Q, which would then result in an output token ψ being yielded in the output
region of P. The time delays match: the time delay for the overall process P is
the sum of the time delays of Q and R. Only if all three conditions are met does
P = Q ◦ R.

It is worth noting that the joining operator is not commutative: if P = Q ◦R
then it may not be that P = R ◦ Q. However, it can be shown that the joining
operator is associative: if P = (p1 ◦p2)◦p3, then P = p1 ◦ (p2 ◦p3), and vice versa.
Since the operator is associative, brackets are not needed in specifying multiple
joins, e.g. P = p1 ◦ p2 ◦ p3.

We can now define spanning using the joining operator:

Definition 4.4. A sequence of unary processes p1, . . . , pn span a process P iff
P = p1 ◦ . . . ◦ pn.

Three remarks should be made about Definition 4.4.
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Figure 4.2: Two distinct sequences of processes may span P. Process P is
spanned by p1, p2, and q1, q2, such that it is both true that P = p1 ◦ p2 and
P = q1◦q2. The upper and lower diagrams describe the same block of spacetime,
showing that distinct intermediate processes can coexist without conflict. In
this case, the two processes involve different spatiotemporal regions, B∩C and
E ∩ F, different tokens, θ and δ, and different time delays, tθ and tδ.

First, it is consistent with Definition 4.4 that a process be spanned by more
than one sequence of subprocesses. For a process P, there may be two distinct
sequences p1, . . . , pn and q1, . . . , qm such that p1, . . . , pn span P and q1, . . . , qm span
P. Different sequences of intermediate tokens and dependency relations can
coexist without conflict. In other words, there can be more than one pattern
of intermediate tokens and counterfactual relations that obtain between a pro-
cess’s overall input and overall output. An example is shown in Figure 4.2. As
discussed in Section 5.1.8, this is one way in which a system can perform more
than one computation at a time.

Second, although a process can be spanned by more than one sequence of
subprocesses, it is not true that a process is spanned by any sequence of sub-
processes. The conditions on spanning are non-trivial. Among other things,
the appropriate intermediate tokens must exist and the appropriate depend-
ency relations must obtain. Furthermore, in order for a process to qualify as
computational, its spanning subprocesses must be representational. Therefore,
the intermediate tokens must represent, and their dependency relations must
preserve representational content. There are not many subprocesses that satisfy
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this condition.
Third, an important property of the joining operator is that it preserves the

representational character of processes. If two representational processes Q,R
are joined to form a process P, then process P is ipso facto representational. This
result can be shown as follows:

Result 4.1. If Q,R are representational processes under I, and P = Q ◦ R, then
P is a representational process under I.

If Q (Ω1,A,B) : Φ 7→ Θ and R (Ω2,C,D) : Γ 7→ Ψ are representational
processes under I, then I associates a single referent JφKI with each φ ∈ Φ, a
single referent JθKI with each θ ∈ Θ, a single referent JγKI with each γ ∈ Γ, and a
single referent JψKI with each ψ ∈ Ψ. If P = Q ◦ R, then according to Definition
4.3, P (Ω,A,D) : Φ 7→ Ψ. The domain Φ of P is, by definition, identical to the
domainΦ of Q. The rangeΨ of P is, by definition, identical to the rangeΨ of R.
This means that we can be sure that each element of P’s domain Φ, and range
Ψ, represents exactly one thing under I. Therefore, condition (1) of Definition
4.1 is satisfied. To show that condition (2) of Definition 4.1 is satisfied, we need
to show that if φ `P ψ and φ′ `P ψ′ and Jφ′KI = JφKI, then Jψ′KI = JψKI. This
can be shown as follows. If φ `P ψ then, by Definition 4.3, φ `Q θ and θ `R ψ.
Similarly, if φ′ `P ψ′, then φ′ `Q θ′ and θ′ `R ψ′. Since Q is a representational
process, if Jφ′KI = JφKI, then Jθ′KI = JθKI. Since R is a representational process,
if Jθ′KI = JθKI, then Jψ′KI = JψKI. Therefore, if Jφ′KI = JφKI then Jψ′KI = JψKI.
Hence, P fulfills condition (2) of Definition 4.1.

Result 4.1 underwrites part of the explanatory strategy discussed in Sec-
tion 3.1.1. The problem we faced was to explain how complex semantically-
sensitive cognitive processes are possible. Part of the solution was to treat such
processes as being made up from smaller processes whose I/O behaviour and
semantic sensitivity are easy to explain. Result 4.1 establishes the link between
the easy-to-explain semantic sensitivity of the subprocesses and the potentially
mysterious semantic sensitivity of the larger process. If the spanning subpro-
cesses of a process are representational, and then the larger process is ipso facto
semantically sensitive—there should be no mystery about it. In other words,
being a composite of simple representational processes is a straightforward
way in which a representational process is possible.

There are other ways in which representational processes are possible. A
representational process could be a spanning sequence of non-representational
subprocesses. However, I wish to claim that such processes are not thereby
computational. A process is computational only if it is spanned by a se-
quence of representational subprocesses. It is compatible with this requirement
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that a computational process be spanned by both representational and non-
representational subprocesses. However, there must be at least one sequence
of representational processes that span a process in order for that process to
qualify as computational. Let us consider why.2

4.2.2 The representation requirement

There are two questions one might ask. First, why do computational processes
need to involve representation at all? I gave three arguments to answer this
question in Section 3.1.2. Second, why must all of the subprocesses of a compu-
tational process be representational? This section provides an answer.

Computational identity of subprocesses

Systems with different physical properties can perform the same computation.
For example, a system made out of silicon and a system made out of tin-cans
and string can perform the same computation. How can we make sense of
this? Anticipating the discussion of Section 5.2.2, we can say that two systems
perform the same computation just in case they are spanned by sequences
of representational processes that are I/O equivalent. Two representational
processes are I/O equivalent just in case their respective I/O pairs represent the
same things. Therefore, the notion of computational identity requires that the
subprocesses of a computation be representational.

The problem for the non-representationalist is that it is unclear how to make
sense of computational identity any other way. Let us return to intuition (ii)
of Section 3.1.2. This intuition was that two computations are the same just in
case they have the same parts and those parts are connected in the same ways.
The parts of a computation are its component subprocesses. Therefore, two
computations are the same just in case they have the same subprocesses and
those subprocesses are connected in the same ways. I wish to focus on what is
meant by subprocesses being ‘the same’. I shall argue that in order to make sense
of this notion, we must assume that those subprocesses are representational.
Hence, the subprocesses of a computational processes must be representational.
One might say: there is no computation without representational subprocesses.

2Here is an example of a representational process that is not spanned by any representational
subprocesses. Suppose that a process P takes pictures as input and yields pictures as output.
Suppose that process P preserves representational content by cutting up its input pictures into
little pieces, moving the pieces around, and glueing them back together to form the same output
picture. Suppose that the intermediate pieces are so small that they do not represent anything.
Process P is representational, it satisfies Definition 4.1, but it is not spanned by any representational
subprocesses: none of its intermediate tokens represent. I claim that such processes, although
possible, are not computational.
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First, let us consider non-representationalist accounts of what it means for
two subprocesses to be the same.

Shared first-order physical properties

One suggestion is that two subprocesses are the same just in case they share
some, or all, of their first-order physical properties. This theory can be quickly
dismissed. Identity of first-order physical properties is neither necessary nor
sufficient for computational identity of subprocesses.

First, computationally identical systems need not share any first-order phys-
ical properties. They can be made out of entirely different things: one system
may be made out of silicon, the other out of tin-cans and string. Therefore,
shared first-order physical properties is not necessary for computational iden-
tity.

Second, two systems can share all their physical properties and yet be
computationally distinct. The same physical system could, in one context,
be interpreted as making predictions about the stock market, and in another
context, be interpreted as making chess moves. Therefore, shared physical
properties are not sufficient for computational identity either.

Shared pattern of relations between physical properties

Another suggestion is that two subprocesses are computationally identical just
in case they share the same pattern of relations between their first-order physical
properties. On this view, two subprocesses are computationally identical just
in case their first-order physical properties are isomorphic in some suitable
sense. For example, suppose that a subprocess E maps an input voltage 0 V
≤ v ≤ 5 V to an output voltage v2, and a subprocess W maps an input water
pressure 0 Pa ≤ p ≤ 5 Pa to an output water pressure p2. Subprocesses E and W
involve different properties and individuals—electrons in one case, and water
in the other. However, the pattern of relations between those properties and
individuals is the same: both subprocesses relate the magnitude of their input
to their output in a quadratic fashion. Therefore, the two subprocesses E and
W count as computationally identical.3

However, isomorphism between first-order physical properties is not suffi-
cient for computational identity. As we saw in Section 3.1.2, such isomorphism
cannot distinguish between a subprocess that implements an AND gate and a

3This means that E and W can count as computationally equivalent parts in different overall
systems (for example, one that operates with electricity, and another that operates with water).
Note that the above argument, although directed against physical isomorphism as an account of
identity of computational subprocesses, works equally well against physical isomorphism as an
account of identity of overall computational systems.
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subprocess that implements an OR gate. The subprocess described in Table 3.2
is equally physically isomorphic to both gates.

Physical isomorphism is not necessary for computational identity either. A
striking feature of computational systems is that they can, in principle, use any
system of coding one likes. For example, one might stipulate that an electrical
signal of 0 V represents 0, and a signal of 5 V represents 1. Or, one might
stipulate that 0 V represents 0, 1 V represents 1, 2 V represents 2, and so on.
Or, one might stipulate that 0 V represents 5, 1 V represents 2, 2 V represents
4, and 3 V represents 1. Or, one might stipulate any system of coding one likes.
The underlying representational relations are easy to set up: all one has to do
is adopt the appropriate conventions. A representational relationship between
my left sock and Tony Blair can be set up simply by adopting the convention
that my left sock represents Tony Blair. Similarly, all that it is required for a
system to compute using any of the coding systems above is for us to adopt
the convention that the system’s tokens represent what the coding system says
they represent. For any voltage v, that voltage can be associated with any value
f (v) one pleases.4,5

Given this flexibility, one can show that subprocesses that are not physically
isomorphic can be computationally identical. Consider two subprocesses A
and B that are not physically isomorphic. For example, suppose that process
A takes signals of voltage 0 V ≤ v ≤ 10 V as input and yields signals of voltage
v as output, and process B takes water pressure 0 Pa ≤ p ≤ 10 Pa as input and
yields water pressure p2 + 100 as output. The two subprocesses relate their
first-order properties in different ways: subprocess A relates the magnitude of
its input to output linearly, subprocess B relates the magnitude of its input and
output quadratically. (A different example can be chosen if one’s concept of
isomorphism differs).

Let S be a system of coding such that a voltage v represents the number
v if 0 V ≤ v ≤ 10 V, and water pressure p represents the number p if 0 Pa
≤ p ≤ 10 Pa and

√
p − 100 if 100 Pa ≤ p ≤ 200 Pa. Suppose that we adopt the

representational convention that the tokens of subprocesses A and B represent
according to S. It now looks like subprocesses A and B perform the same
computation: they both compute the function f (x) = x. The two subprocesses,
under this system of representation, play the same computational role: they
are computationally the same in the sense described above. Hence, the two

4Within limits: a coding must be consistent, and it can assign at most one referent to each token.
5Note that a system of coding and an interpretation function are different. A system of coding

is a stipulation, for each token, of one thing that token represents. An interpretation function is
a selection, for each token, of one thing from among the things that token represents. A system
of coding sets up new representational relationships, an interpretation function selects already
existing representational relationships.
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subprocesses are computationally identical. Therefore, physical isomorphism
of subprocesses is not a necessary condition for computational identity.6

Shared representational content

Shared physical properties and isomorphism of physical properties are poor
guides to computational identity. The correct guide to computational identity
is representational content. Representational content allows us to make sense
of two physically distinct systems performing the same computation. It also
allows us to make sense of two physically non-isomorphic systems performing
the same computation.

The intuition above was that two computations are the same just in case
they have the same subprocesses and those subprocesses are connected in the
same ways. The question was how to make sense of the notion of ‘the same’
subprocess. The first suggestion was that ‘the same’ means a subprocess with
shared first-order physical properties. The second suggestion was that ‘the
same’ means a subprocess with a shared pattern of relations between physical
properties. These suggestions were shown to be flawed. The current suggestion
is that ‘the same’ subprocess means a subprocess that maps the same represent-
ational content to the same representational content. Two subprocesses are ‘the
same’ just in case they perform the same mapping between representational
content. This notion of sameness will later be called ‘I/O equivalence’ and is
defined in Section 5.2.2. For the moment, note that computational identity
presupposes representational content at the subprocess level.

The definition of a representational process, Definition 4.1, has two require-
ments: that a representational process map representations to representations,
and that the mapping be representation-preserving. I have argued that the
subprocesses of a computation map representations to representations. It is not
hard to show that those subprocesses must also be representation-preserving.
For the sake of brevity, the argument is given in Appendix A. Granted that this
argument is correct, we can conclude that the subprocesses of a computation
must be representational.

4.2.3 Simple processes

Definition 4.2 requires that the spanning subprocesses of a computation be
simple. Subprocesses often regarded as simple include: logic gates such as
AND and OR gates, processes that detect if two representation tokens are the

6Note that a restriction to properties that are ‘natural’, as defined by Lewis (1983), is of no help.
Even among natural properties, isomorphism is neither necessary nor sufficient for computational
identity. To take one example, being 0 V and being 5 V (at least plausibly) are natural properties.
Therefore, this view still does not secure facts about whether a system is an AND or an OR gate.
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same or different, processes that output the first/last elements of a sequence of
representation tokens, processes that add a representation token to the start/end
of a sequence of representation tokens, processes that generate the successor of a
numerical representation, and processes that generate the sum of two numerical
representations. Although it is easy to give examples of computationally simple
processes, it is not easy to say what their computational simplicity consists in.

A Turing-style definition

Intuitively, simple processes are those that we wish to be the building blocks of
computations. What determines whether a given process is computationally
simple? One might consider Turing’s definition of computation. For Turing, the
building blocks of computation are processes that do not require any insight or
ingenuity on the part of the human being executing them. So one might define
a simple process as a process that, if executed by a human being, would not
require any insight or ingenuity.

Unfortunately, this definition is not appropriate for our purposes. First,
there are processes that humans beings can execute without insight or ingenuity
but which, from the point of view of the CTM, we do not wish to classify
as computationally simple. Human beings can recognise three-dimensional
objects, play musical tunes, and parse the syntax of their native language
without insight or ingenuity. These processes are at least as free from insight and
ingenuity as the simple operations described above. However, in each case—
objection recognition, music playing, and syntax parsing—we do not wish to
claim, in the context of the CTM, that the relevant process is computationally
simple. Considerable effort is spent in the CTM in showing that these processes
are made up from smaller processes. Therefore, Turing’s criterion is not a
sufficient condition for a process to count as computationally simple in this
context.

Turing’s condition is not a necessary condition in this context either. There
are processes that are treated as computationally simple by the CTM but which
humans, if they can perform them at all, cannot do so without insight or in-
genuity. Consider a process with the same I/O behaviour as a Purkinje cell. A
Purkinje cell may have as many as 200, 000 inputs and extremely complex I/O
behaviour. It seems unlikely that a human clerk could replicate its action as a
single operation without using insight or ingenuity. Yet, from the point of view
of the CTM, we wish to treat such processes as computational simples. Sev-
eral theories of cerebellar motor function treat Purkinje cells as computational
simples (Albus, 1971; Houk et al., 1996; Ito, 1984; Marr, 1969; Pellionisz et al.,
1977).
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A single-step definition

An alternative definition of computational simplicity is that simple processes
are those that can be executed in a single step. This definition differs from
the insight-and-ingenuity proposal: it is conceivable that a process can take
multiple steps and be free from insight and ingenuity, and it is conceivable
that a process can involve insight and ingenuity but only take a single step.
However, the single-step intuition fits with the way in which we understand
many electronic computers. Simple processes are those that cannot be broken
down into a further sequence of instructions, e.g. those operations that are
atomic.

The main problem with the single-step definition of computational simpli-
city is that it presupposes that we have an independent grasp of the notion of a
single computational step, and it is not clear how we could have this. Appeal
to single computational steps only constitutes progress if that notion has more
content than just its link to the notion of computational simplicity. There ap-
pears to be two options: either define the notion of a single computational step
in terms of independent notions, or argue that the notion of a single compu-
tational step should be left as an undefined primitive. Let us see why neither
option is acceptable.

First, consider how one might define the notion of a single computational
step in independent terms. One apparently plausible strategy is to define a
single computational step in terms of clock-cycles. Many electronic computers
have a clock and an associated notion of a clock-cycle. In these ‘synchronous’
architectures, the length of a clock-cycle determines the time taken for the
shortest unit of computation. Therefore, it seems plausible to define a single
computational step as a computational operation that lasts for exactly one
clock-cycle.

There are three problems with this definition. First, not every computation
has a clock. Synchronous architectures are common, but there is no reason
why a computer should have a clock or an associated notion of clock-cycle.7

For computations that lack a clock, the definition above leaves us with no clue
as to how to understand single computational steps, and hence computational
simplicity. Second, some single-step operations take longer than others. One
single-step operation (e.g. NOT) may take one clock-cycle, while another single-
step operation (e.g. MOVE) may take two clock-cycles. Therefore, processes
that are single-step may last for longer than one clock-cycle.8 Third, even
setting aside previous worries, the principle of linking computational simplicity

7For more on this point, see Section 5.1.1.
8Hennessy and Patterson (1998), 438–439.
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with single clock-cycles processes seems dubious. Such a move prevents high-
level operations being ‘black-boxed’ and treated as new computational simples.
Black-boxing seems a key part of our computation talk. There appears to be
no reason to privilege single clock-cycle instructions as computationally simple
over black-boxed candidates.

If defining single steps in terms of clock-cycles fails, how should one then
define that notion? I cannot think of any plausible alternatives. The only notion
that seems adequate to define the notion of a single computational step is the
notion of a computationally simple process, and we have already seen that
that is unacceptable. Can the notion of a single step be left as an undefined
primitive? Unfortunately, it cannot. The notion of a single step raises too many
questions to be left as an undefined primitive. Single computational steps are
just too curious to leave questions about their nature unanswered.

One aspect of single computational steps that needs to explained is that
the number of steps that a process takes seems to be, to some extent, in the
eye of the beholder. A process that counts as single-step in one context can
count as multiple-step in another. Imagine a computational process that adds
numbers and which is made out of many smaller computational processes. As
the context is currently described, the addition process is multiple-step—it is
made out of smaller steps. However, in the context of a larger computation,
this addition process may be black-boxed and treated as a single computational
step, a single addition operation. Our intuitions seems to allow for this to be
possible. Indeed, most addition processes inside real-world computers are
made up of smaller steps, even though they are often regarded as paradigms
of single-step processes.

This change in number of steps seems to be interest-relative. While for a low-
level hardware designer, the addition process would count as multiple-step, for
a high-level programmer the same addition process would count as single-step.
It does not seem that either the hardware engineer or the programmer has made
a mistake in this respect. Rather, there does not seem to be a mind-independent
fact of the matter to capture. The number of computational steps that a process
takes depends on the interests of observers.

An alternative, non-interest-relative, theory of single computational steps
is hard to believe. Suppose that there really is an absolute answer to whether
an addition process is single or multiple step. What possible metaphysical
facts could underlie this answer? It cannot be facts about clock-cycles, since
we have already rejected that analysis. Any facts that distinguish single steps
from multiple steps have to be mind-independent. But it is hard to think of any
mind-independent difference between single-step processes and their black-
boxed counterparts. Short of positing bizarre sui generis facts that distinguish a
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privileged basic level computation, I cannot see of any way to do it.
For the moment, let us accept that what counts as a single step is, to some

extent, in the eye of the beholder. If this is correct, then it is not plausible to
take the notion of a single computational step as an unanalysed primitive. The
problem here is not so much that the notion of a single step allows interest-
relativity, but that it would leave that interest-relativity unexplained. Taking
the notion of a single step as an unanalysed primitive gives no clue as to what
makes a process single-step and how our interests come into that decision.
Indeed, the mention of interest-relativity may give the unjustified impression
that the decision is entirely subjective. Therefore, a minimal requirement on a
definition of single computational steps is that it give some account of how our
interests affect whether a process is single-step. Otherwise, the nature of single
steps just seems either entirely subjective or plain mysterious. The interest-
relativity of single steps needs an explanation, and the approach above is no
help at providing it.

To summarise, the advocate of a single-step definition of computationally
simple processes faces a dilemma. Either she can explain the notion of a single
step in terms of other notions, or she can treat that notion as an undefined
primitive. If she chooses the former option, then she faces the difficulty of
finding notions in which to explain the notion of a single step. If she chooses
the latter option, then she is open to the charge that she leaves central features
of single steps, such as interest-relativity, unexplained.

An explanation-based definition

I have argued that computationally simple processes should not be defined in
terms of either insight and ingenuity or single computational steps. Instead, I
suggest the following definition:

Definition 4.5. A representational process p is simple just in case its mechanism
does not call for a computational explanation.

We saw in Section 3.1.1 that certain processes have I/O patterns that are so
simple that they do not call for computational explanation. According to the
definition above, such processes are computational simples. If a process does
calls for computational explanation—if it is not clear how it works—then that
process is not a computational simple. A process is a computational simple just
in case it is not mysterious how it could achieve its I/O pattern. Processes that
are not computational simples raise the kinds of questions discussed in Section
3.1.1 about how such processes are possible and how they work.

Let us discuss the features of the definition point by point.
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First, the definition is vague, since it may not be clear-cut whether a par-
ticular process calls for computational explanation or not. However, as Lewis
(1973) points out, a vague definition is acceptable provided both definiens and
definiendum are vague in the same respects. I believe that this true of our con-
cepts of computational explanation and computational simplicity. Imagine that
in a certain computation an addition operation is always followed by a comple-
mentation operation. It is hard to say whether this process counts as a simple
process or as two distinct processes. Our intuitions about simplicity do not
provide a clear answer. Similarly, whether the mechanism of the joint process
calls for computational explanation is also unclear: maybe the joint process has
sufficiently complex I/O behaviour to call for computational explanation, or
maybe not. Without more information it is difficult to say. However, if in a cer-
tain context we decide that the joint addition–complementation operation does
not need a computational explanation, then it seems reasonable to treat the joint
process as a computational simple. Similarly, if we decide that the joint process
does need a computational explanation, then that means we believe it to be made
up from smaller computational simples, and so cannot consistently classify it
as a computational simple. Correspondingly if, for whatever reason, we decide
that the joint process does count as a simple, then it seems inconsistent to insist
that a computational explanation of it is required. Similarly, if we decide that
the joint process does not count as a simple, then its mechanism will require
an explanation in terms of simpler processes. Therefore, it seems that once the
question of whether a process is computationally simple has been settled, then
the question of whether that process needs computational explanation has also
been settled, and vice versa. The boundaries of both vague concepts align.

Second, the definition above can accommodate the intuition that made the
single-step definition so attractive. The single-step definition defined compu-
tational simplicity in terms of single computational steps. This equivalence can
be retained in Definition 4.5 by reversing the direction of the single-step defin-
ition. Instead of defining computational simplicity in terms of single steps, we
can define single steps in terms of computational simplicity. This preserves
the intuition that a computationally simple process is one that is executed in a
single step. Since we have an independent account of computational simplicity,
this avoids the criticism above that such a definition would be circular.

Third, Definition 4.5 defines simple processes in terms of specifically com-
putational explanations because it is conceivable that there could be calls for
other types of explanations of the mechanism of computational simples. For
example, there might be a call to explain why the mechanism of a particular
process is implemented in silicon rather than germanium. The explanation
might be cost, or availability of materials—nothing that would require one to
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consider the process as computationally non-simple. The mechanism of a pro-
cess can raise many questions, but provided those questions do not involve a
call for a specifically computational explanation, then that process is simple.

Fourth, Definition 4.5 makes computational simplicity depend, to some ex-
tent, on our interests. It is dependent on our interests to the extent that our
explanatory standards are dependent on our interests. This does not mean
that computational simplicity is a matter of arbitrary choice. Our explanatory
standards cannot be arbitrarily adjusted in a purely subjective way. Definition
4.5 does not entail that ‘anything goes’, or that what counts as a simple pro-
cess is insensitive to that process’s mind-independent nature. Computational
simplicity depends on some combination of the intrinsic nature of the process,
the context in which the process takes place, and our explanatory interests and
goals. The details of this mix depend on the correct theory of explanation.9

Fifth, Definition 4.5 does better than the previous definitions because it can
explain how and why the simplicity of a process is interest-relative. According
to Definition 4.5, the simplicity of a process is interest-relative because our
explanatory standards are interest-relative. We had a specialised notion—
computational simplicity—that we found was interest-relative. The current
definition explains this interest-relativity in terms of a more general form of
interest-relativity: the interest-relativity of explanation. This phenomenon may
itself not be understood, but it at least has the virtue of being wide-spread: the
interest-relativity of explanation is not specific to computation. Though not a
solution, this at least is a promising start in explaining the interest-relativity of
computational simplicity.

Sixth, black-boxing was mentioned as a procedure by which processes can
be grouped into new computational simples. An attractive feature of Defin-
ition 4.5 is that it explains what black-boxing is, and when black-boxing is
and is not legitimate. If one accepts Definition 4.5, then black-boxing can be
understood as a switch in our explanatory standards. Black-boxing involves
a switch from treating a group of processes as in need of a computational ex-
planation to treating that group as a single process whose workings need no
computational explanation. Black-boxing is legitimate just in case it is legitim-
ate to apply the associated explanatory standards in that particular situation.
This fits with many of our intuitions about black-boxing. A group of processes
that is black-boxed and treated as a computational simple in one explanatory
context may be broken down and considered as made up from components in
another. If one decides, in a particular context, to black-box a process, then

9In Section 6.1.3, I argue that the apparent mind-dependence of computational simplicity does
not entail that computation must also be mind-dependent. There are a variety of ways in which a
realist about computation can defend her position in this regard.
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effectively one denies that a computational explanation of that process is owed
in that context. Similarly, if one sets one’s explanatory standards such that a
certain computational process calls for explanation, then it would be untrue
to those explanatory standards to then black-box that process and treat it as a
computational simple.

Seventh, Definition 4.5 fits with the account given above of the CTM. As
described in Section 3.1.1, the purpose of the CTM is to provide an explanation
of how complex semantically sensitive cognitive processes could work. One
way of explaining how a cognitive process could work is to show that it is made
up from other processes. For this to be a good explanation however, those
other processes must not themselves be in need of explanation. These are the
computational simples. Therefore, just as Definition 4.5 entails, our explanatory
standards must coincide with our standards of computational simplicity. A
second point is that if our explanatory standards change, then the processes
that count as simple change too. This is also reflected in the practice of cognitive
science. In some areas, the cognitive processes of attention, memory, and syntax
parsing are black-boxed and used to explain other processes. In other areas,
those processes themselves come under scrutiny and are explained in terms of
other computational simples. As Definition 4.5 claims, cognitive scientists treat
different processes as computationally simple in different explanatory contexts.

Three objections

Definition 4.5 appears to be open to three objections.

Objection 1. Definition 4.5 uses the notion of computation on both sides. In Definition
4.2, computational processes were defined in terms of simple processes. Now in Defin-
ition 4.5, simple processes are defined in terms of ‘call for computational explanation’,
and hence in terms of computation.

The response to this objection is that ‘call for computational explanation’ is
not meant to be understood in a way that presupposes the notion of computa-
tion. What is meant by ‘call for computational explanation’ has already been
indicated. A mechanism of a process calls for computational explanation if that
mechanism is mysterious, if questions arise about how that process is possible,
how it works, or how it could be sensitive to the representational contents of
its tokens. The notion ‘call for computational explanation’ is intended to be
understood as independent of, and prior to, the notion of computation.

Objection 2. Definition 4.5 presupposes simplicity rather than defining it. Definition
4.5 defines computational simplicity in terms of need for explanation. However, the
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notion of ‘need for explanation’ arguably presupposes the notion of ‘not-simple’, which
itself presupposes the notion of ‘simple’, which is the notion that we are trying to define.

This objection would be correct if Definition 4.5 attempted to define a gen-
eral notion of explanatory simplicity. However, this is not the case. The notion
that Definition 4.5 attempts to define is a specialised type of simplicity: the
notion of computational simplicity. Even if the notion of ‘need for explanation’
presupposes our general notion of simplicity, that does not mean that it presup-
poses this specialised notion. It is worth noting that the term ‘computational
simplicity’ in the context of this specialised notion is largely a term of art. It is
not clear what connections the notion of computational simplicity has to our
general notion of simplicity.

Objection 3. Reduction to simple components is only one form of explanation, but
Definition 4.5 presupposes that it is the only form of explanation.

This objection has already be dealt with by the third point discussed above.
Definition 4.5 does concern computational explanation, but it does not require
that this is the only kind of explanation that can be given. Reduction to simples
is not the only form of explanation, but it is the only form of explanation relevant
when deciding whether a process is computationally simple.

Turing-equivalence of simple processes

A representational process is Turing-equivalent just in case it is I/O equivalent
to some Turing machine. An example of a process that is not Turing-equivalent
is a process that can correctly predict whether an arbitrary Turing machine
halts or not on arbitrary input (viz. that solves the halting problem). Let us call
processes that are not Turing-equivalent ‘incomputable’. Can incomputable
processes qualify as computational simples? An immediate reaction is that they
should not. It is generally regarded as a minimal condition on computation that
a process should be computable and that each of its steps should be computable.

A potential objection to Definition 4.5 is that it does not obviously entail
this condition. Definition 4.5 defines computational simplicity in terms of the
need for computational explanation. The need for computational explanation
is sensitive to our explanatory interests and those interests can vary. There
appears to be no guarantee that variation in our explanatory interests will
always respect the boundary between Turing-equivalent and incomputable
processes. In other words, it is conceivable that there could be an incomputable
process which, for some reason, we feel no need to explain. According to Definition
4.5, such a process would qualify as a computational simple.
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There is a strong temptation to legislate against such cases. However, we
should not be too hasty. Sometimes we might wish to relax the limits on com-
putability described by Turing and consider computation in a broader sense.
For example, consider Turing’s own discussion of oracle machines. Turing
defines an oracle machine as a Turing machine with an extra atomic opera-
tion O, which solves the halting problem.10 Even though operation O is not
Turing-computable, Turing still asks what kinds of computation (in a broader
sense) can be performed by such a machine. More recently, some philosophers
have claimed that there could be physical systems which intuitively seem to
be performing computations and yet fail to satisfy Turing-equivalence.11 The
possibility of such cases appears to show that our intuitions about computation
apply to a wider class of phenomena than Turing-equivalence alone would
suggest.

These cases are handled nicely by Definition 4.5. Definition 4.5 sets the
requirements for the simple processes of a computation to be explanatory rather
than Turing-equivalence. This explains how oracle machines can be introduced.
When an oracle machine is defined it is stipulated that operation O is possible
without enquiring into its workings. When one talks about the ‘computations’
that oracle machines perform, one stifles any desire to know how process O
works: one black-boxes process O. In this respect, process O is like any other
computational simple. Similarly, we may choose to black-box certain physical
processes and treat them as computational simples. As described above, it
is conceivable that this could happen even if those physical processes are not
Turing-equivalent.

Definition 4.5 gives an attractively unified treatment to Turing-equivalent
and non-Turing-equivalent computation. If one wishes to restrict attention
to Turing-equivalent cases, then Turing-equivalence can be added as an ex-
plicit requirement to Definition 4.5. However, Definition 4.5 as it currently
stands shows how Turing-equivalent and non-Turing-equivalent computation
fall under the same general intuitions, and it explains how the two notions are
continuous. Definition 4.5 also explains why we even have intuitions about
computation in a broader sense at all. Contrary to our initial reaction, it is a
positive virtue of Definition 4.5 that the requirement of Turing-equivalence is
not entailed.

10See Turing (1939). See also discussion in Copeland (1998).
11For example, see Cotogno (2003); Hogarth (1994); Ord (2002); Welch (2004).
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Stateful processes

A stateful process is a process whose output depends, not just on its current
input, but also on its previous input. In other words, a stateful process is a pro-
cess with a memory. Stateful processes are common in electronic computers.
Such processes have not yet been considered. Processes, as they are defined
in Definition 3.2, are non-stateful: they are sensitive only to their current in-
put. However, there are a number of ways in which stateful processes can be
accommodated.

First, one might try to reduce any stateful process to a spanning sequence of
non-stateful processes. This strategy should be familiar from other processes
with mysterious I/O behaviour: treat a process with mysterious I/O behaviour
as made up from components with non-mysterious I/O behaviour. Many real-
world stateful processes are made up from entirely non-stateful subprocesses.
It is surprisingly easy to create such processes. Examples of how this is done
are given in Section 5.1.6.

However, as a general strategy, a reductionist approach to stateful processes
is not attractive. First, it is not clear whether it is possible to reduce every stateful
process to non-stateful subprocesses. Second, on such an approach, a stateful
process cannot itself qualify as a computational simple, and this seems to clash
with our intuitions. In many cases we do wish to treat a stateful process as a
computational simple. We black-box stateful processes, resist asking questions
about their workings, and treat them as simple components when building
larger computations. It seems wrong to insist that simple processes must
always be non-stateful.

Fortunately, there is a more attractive way in which stateful processes can
be accommodated: Definition 3.2 can be modified to allow processes to be
stateful. Instead of associating a set of triples of I/O pairs and time delays with
each process, we can associate a set of inputs crossed with all possible past
inputs. Therefore, instead of the set Ω consisting of triples (φ,ψ, t), it should
instead consist of tuples (φ1, . . . , φn, ψ, t) where φ1, . . . φn−1 are the previous
inputs to the process, i.e. the inputs prior to φn. For the sake of simplicity in
what follows, we shall stick to the original, non-stateful, definition of a process.
However, extending the definitions to cover the stateful cases is not hard.

4.2.4 Structured representation

Definition 4.2 requires that the inputs to each subprocess of a computation be
structured. The notion of ‘structured representation’ is intended to define the
notion of ‘formal’ or ‘syntactic’ structure introduced in Section 3.1.1. In Section
3.1.1, it was described how a key requirement on computation is that the rel-
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evant processes be sensitive to the formal structure of their input. Examples of
inputs with formal structure include: a sequence of electrical pulses, a sequence
of ink-marks (e.g. ‘01101110’), and an input made out of interlocking parts (e.g.
a Lego model). This section aims to give a general account of what it means for
a representation to have formal structure.

Representation types

Before defining the notion of a structured representation, we need to define the
notion of a representation type. So far, by ‘representation’ we have meant a rep-
resentation token. For some purposes however, it is useful to consider groups
of representation tokens. Representation tokens can be grouped together in
many ways. One important way of grouping representation tokens is by the
property of representing the same thing. Let us define the ‘representation type’
of a token φ on a set Φ as the set of tokens in Φ that represent the same thing
as φ.

Definition 4.6. The representation type of a token φ on a setΦ under interpret-
ation function I is {φ′ ∈ Φ : JφKI = Jφ′KI}.

Two points should be made. First, representation types are not sui generis
features of the PR-model. Reference to representation types can be eliminated, if
one so wishes, in favour of conditions involving representation tokens. Second,
by Definition 3.1, eachφ ∈ Φ represents exactly one thing under I. Therefore, the
set of representation types on Φ under I are equivalence classes on Φ. In other
words, those representation types divide Φ up without overlap or remainder.

Structured representation

A structured representation is a representation that is a member of an alphabet
of a finite number of basic representation types, or a composition of members
of those basic types. Examples of composition operators are: spatial composi-
tion, temporal composition, and chemical bonding (e.g. the bonding between
nucleotides in DNA). A computation is sensitive to the formal structure of an
input representation just in case the output of that computation depends only
on the basic types that make up that input and the way in which those types
have been composed together. A representational process operates on structured
representations just in case its inputs are structured representations and it is
sensitive to their formal structure. This can be formalised as follows:

Definition 4.7. A representational process P : Φ 7→ Ψ under I operates on
structured representations just in case there is a basic alphabet set Θ, and a
finite number of composition operators, �1, . . . , �m, such that ∀φ ∈ Φ, either:
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• φ is a composite, or

• φ ∈ Θ.

Definition 4.8. φ is a composite iff φ = x1 �x2, where � ∈ {�1, . . . , �m} associated
with the process, � is a valid composition operator on x1 and x2, and for i ∈ {1, 2},
either:

• xi ∈ Θ, or

• xi is a composite.

Definition 4.9. � is valid composition operator on x1 and x2 under I just in case
if Jx1KI = Jy1KI = α, Jx2KI = Jy2KI = β, and Jx1 � x2KI = γ, then Jy1 � y2KI = γ.

Let us discuss the features of the definition point by point.
First, Definition 4.7 allows a representation token to be made up from mul-

tiple representations and multiple composition operations, e.g. φ = (x1 �1 (x2 �2

x3))�3 x4. In many cases, the number of basic representation types and the num-
ber of different composition operators is small, but in principle, their numbers
could be as large as one likes, so long they are finite. The possibility of nesting
composition operators provides a reply to a possible objection. The objection
is that there might be composition operators that operate on more than two
representations at a time. For example, a composition operator might compose
three representation tokens at a time to form a fourth token. Such cases are not
covered by the definition above, which only consider binary composition oper-
ators. However, Definition 4.7 can accommodate n-ary composition operators
by treating such composition operations as a sequence of binary compositions.
The procedure is similar to that of treating an n-ary function f (x1, . . . , xn) as a
nested sequence of binary functions: f1(x1, f2(x2, f3(x3, . . . fn−1(xn−1, xn))))).

Second, the alphabet set Θ need not be part of the domain Φ of the process.
To see why this condition is justified, consider the following case of operation
on structured representation. Consider a process that operates on a temporal
sequence of eight electrical signals, each of which can be either 0 V or 5 V—
a process that operates on bytes. Suppose that the process performs some
operation, such as checking whether the eighth signal represents 0 or 1. The
domain Φ of the process is a domain of sequences of signals—a domain of bytes.
However, plausibly the alphabet set Θ consists only of single signals of 0 V or
5 V, which are temporally composed together to form a sequence. These basic
representations are not valid inputs to the process. A lone 5 V signal would
not be a valid input to the process. Only a sequence of eight signals is valid
input. Hence, the alphabet set Θ need not be part of the domain Φ. Note that
composite representations, such as x1 � x2, need not be part of the domain Φ
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either. A sequence of two signals is not a valid input to the process either, even
though it is composite. Therefore, not all composite representations or basic
representations need be part of the domain Φ.

Third, Definition 4.9 states that the output of a process is at most sensitive to
the representational content of its input’s constituents. If a process yields a value
with representational content other than JψKI for its output, it must be that either
the representational content of x1 or x2 in the input token x1 � x2 has changed,
or the input is no longer in the �-part of the domain. (Remember that by
condition (2) of Definition 4.1, if a process yields a value with representational
content other than JψKI, then it must be that the representational content of
its input Jx1 � x2KI has changed, and hence by Definition 4.9, that either the
representational content of x1 or x2 have changed, or the input is no longer in
the �-part of the domain). Therefore, process P is sensitive, on the relevant
�-part of its domain, only to the representational content of x1, x2 and the way
in which they are composed. This gives a precise definition of the way in which
computations are sensitive to the formal structure of their input.

Definition 4.9 can be understood as an extension of Definition 4.1. Condition
(2) of Definition 4.1 states that if two input tokens of a representational process
share the same representational content, then they produce output tokens that
also share the same representational content. Definition 4.9 applies the same
principle to the component parts of representations. Definition 4.9 states that if
two input tokens have components that share the same representational content,
and they are composed in the same ways, then they should map to output
tokens that share the same representational content.

Definition 4.9 places an upper bound on how the output of P can vary as the
components of its input are changed. The output of P can be at most sensitive to
the content of its input’s components: no variation in representational content
of the output is allowed without variation in the representational content of
the input’s components, or the way in which they are composed. However,
Definition 4.9 places no lower bound on how the output of P can change with
variations in representational structure. It is consistent with Definition 4.9 that
process P completely ignore some components of its input, i.e. that changes
in the component representations have no effect at all on the representational
content of the output. This may seem odd. What is to stop one from positing
all kinds of strange structures that have no effect on the output? What is to stop
one from introducing as many composition operators as one likes?

There are two reasons why one should not worry about this problem.
First, there is a good reason why Definition 4.9 places no lower bound on

how the output of P can vary with changes in representational structure. It
turns out to be convenient to say that certain processes operate on structured
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representations even if those processes do not respond to changes in that struc-
ture. This is especially true of simple processes. Even though a simple process
may not use a certain aspect of the structure of a representation—it may not
change its output if changes are made in the components of that input—it is
nevertheless useful to say that the process operates on those structures. One
might think of such a process as ‘passing’ such structures, operating on them
without responding to all of their features. A liberal approach in this respect
allows us to preserve the intuition that a representation can keep its structure
throughout different subprocesses in a computation even though not all of them
would be sensitive to all aspects of its structure. We can say that a representa-
tion can keep its structure throughout a computation, with some subprocesses
operating on some parts of its structure and others on others. Even if not all
of a computation’s subprocesses respond to every feature of a representation’s
structure, we can still say that those subprocesses operate on a single univocal
structure.12

Second, it is not true that one is free to introduce as many composition
operators as one likes. Although Definition 4.9 does not explicitly forbid the
introduction of strange and useless operators, other norms rule them out. In
particular, the pragmatics of computation talk rules such operators out. It is
a violation of norms of informativeness and relevance to talk about aspects
of representational structure that play no role in a computation. One way of
phrasing this norm would be to say that a composition operator should not be
introduced into a computation if changes in the components of that operator
have no effect on the output of any of the subprocesses of that computation.
This statement of the norm may need to be refined, but the point remains that
pragmatic factors rule out the introduction of strange and useless operators. It
is not false to posit such operators, but it is inappropriate. The pragmatics of
computation talk receives more discussion in Section 5.3.

A final point of clarification is that although the joining operator ‘◦’ of
Section 4.2.1 and composition operators ‘�’ discussed above both compose
things, they compose different things. A joining operator composes processes,
a composition operator composes representations. Computations are therefore
compositional in at least two respects: they are composed of subprocesses, and
their input representations are composed of basic representations.

Examples of composition operators

A computational process can use the same composition operators through-
out its computation, or it can use different composition operators at different

12A lower bound that could be added to Definition 4.9 without violating these intuitions would
be desirable, but I cannot see how to do it.
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stages. Commonly used composition operators include: spatial concatena-
tion, temporal concatenation, superposition of waveform, and coinstantiation
of properties. Here is a brief description of each.

Two representations are spatially concatenated just in case they are phys-
ically adjacent to each other in some specified way, the details of which are
specified by the operator in question. For example, the ink-marks ‘abc’ consists
of the individual ink-marks ‘a’, ‘b’, and ‘c’ spatially concatenated. The indi-
vidual ink-marks represent letters, and a spatial concatenation of ink-marks
represents a string of letters. A computational process might operate on such
representations. For example, a head process might take a spatial concatenation
of ink-marks as input and yield an ink-mark that represents the first letter of
the input (the head of the string) as output: if a head process is presented with
‘abc’, it yields ‘a’ as output. As required by Definition 4.9, such a process is
not sensitive to more than the representational content of the components of its
input and the way in which those components have been composed together.

Two representations are temporally concatenated just in case they are tem-
porally adjacent to each other in some specified way, the details of which are
specified by the operator in question. For example, voltage signals can be tem-
porally concatenated to form a temporal sequence of voltage signals. Such a
sequence may be a single input to a computational process. This is true of many
processes inside electronic computers. Instead of operating on single voltage
signals, these processes operate on temporal sequences of voltages, e.g. bytes.

Two representations are waveform superimposed just in case they are both
waves and have been added together by a superposition operation. Waveform
superposition requires that the components of the representation be of different
frequencies or phases, just as spatial and temporal concatenation require that
their components occupy different spatial or temporal locations. Waveform
superposition is used in electronic computers to perform computations across
telephone wires.

Two representations are composed by coinstantiation of properties just in
case a composite instantiates some subset of both their properties, the details
of which are specified by the operator in question. For example, suppose
that x1 instantiates the property of having a green dot, and x2 instantiates the
property of having a red dot. A composite x1 � x2 may instantiate both the
property of having a green dot and the property of having a red dot. Suppose
that the property of having a red dot represents a value on the x-axis, and the
property of having a green dot represents a value on the y-axis. The composite
x1 � x2 could then represent a combination of the representational content of its
components (e.g. a location on the xy-plane). A process could be sensitive to this
representational content in a straightforward way by responding differently to
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the two different properties.
Three consequences should be noted. First, a composite representation need

not have its components as proper spatial or temporal parts. In the examples
above, this was true of waveform superposition and coinstantiation of prop-
erties. Second, a composite may have parts and properties that neither of its
components have. These extra parts and properties do not count as internal
structure if they do not have an associated representational content. One might
think of these extra parts and properties as ‘junk’—a non-representational back-
ground against which changes in representational structure are noticed. Third,
in some cases the input representations of a computation may not have any
interesting structure at all. For example, the inputs of a NOT gate are signals
of 0 V and 5 V that represent 0 and 1. There are no composition operators or
composite representations, just two basic representation types. However, it is
convenient to extend the notion of structured representation to these cases and
to call them ‘structured’. It is clear that they satisfy Definition 4.7, albeit only
the base clause of the definition.

Analogue computation

An analogue representational process is a representational process whose do-
main or range represents a continuum, such as the real number line.

Definition 4.10. Representational process P (Ω,A,B): Φ 7→ Ψ under interpret-
ation function I is an analogue representational process iff either of the sets
{JφKI : φ ∈ Φ} or {JψKI : ψ ∈ Ψ} has a subset that is a continuum.

An analogue computational process is a computational process at least one
of whose spanning subprocesses is an analogue representational process. Ana-
logue computation allows for calculation with an unlimited degree of accuracy.
An analogue adding process can add real numbers exactly, without approxim-
ation. However, this ideal is rarely realised in the real world. Few physical
processes, and perhaps none, are sensitive to infinitesimal differences in rep-
resentational content. Usually there are limits to how far individual tokens can
reliably be discriminated. This is the main reason why analogue computation
is rarely used in electronic computers.

Analogue computation requires that represented entities form a continuum;
it does not require that the representation tokens form a continuum. These two
conditions can come apart in the following ways.

First, a set of tokens can form a continuum even if their representational
content does not. Consider a process that takes input voltages that lie in the
continuum between 0 V and 5 V. Suppose that signals of magnitude v (0 V
≤ v ≤ 2.5 V) represent 0, and signals of magnitude v (2.5 V < v ≤ 5 V) represent
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1. The set of input tokens forms a continuum. However, the representational
content of those tokens does not: it consists of only the two values 0 and 1.13

Second, the set of representational content can form a continuum even if
the representation tokens do not. The set of representational content forms
a continuum just in case there are enough tokens, and the right representation
relations obtain. There are enough tokens provided those tokens can be put into
a one-to-one correspondence with the members of a continuum.14 Notably, this
condition can be satisfied without the tokens themselves forming a continuum.
All that is required is that the set of tokens be uncountable. This condition
can be satisfied without the tokens forming a continuum by, for example, the
tokens failing to be linearly ordered.

Some cases of analogue computation appear to violate Definition 4.7. Ac-
cording to Definition 4.7, each input token must either be a member of a finite
number of representation types, or the result of a finite number of compositions
of members of those types. Consider a representational process in which a con-
tinuum of input voltage signals represents a continuum of real numbers. This
process appears to violate Definition 4.7 because it is not clear how each input
could either be a member of a finite number of representation types, or the
result of a finite number of compositions of members of those types. Definition
4.7 can be weakened to accommodate these cases. However, this possibility
will not be considered. In what follows, we shall ignore such cases of analogue
computation and focus on the core cases of computation relevant to the CTM.

4.3 General computational processes

So far we have only considered unary processes: processes that take single
representations as input and yield single representations as output. In this
section, we shall consider general processes: processes that can take multiple
representations as input and yield multiple representations as output. General
processes offer the possibility of much more complex computational structures
than their unary counterparts. General processes can be used to create much
more complex computational architectures (for example, see Figure 4.3). Unlike
unary processes, general processes are not restricted to being made up from a
linear chain of simple processes.

Definition 3.2, the definition of a process, does not support the possibility
of processes with multiple input and output. Therefore, Definition 3.2 needs
to be modified before we can continue. Let us consider how we should revise

13Many real-world logic gates accept voltages in continuous ranges (e.g. 0± 0.4 V and 5± 0.4 V),
even though such processes are prime examples of non-analogue processes.

14Strictly speaking, only a surjection between the tokens and a continuum is required.



CHAPTER 4. THE PR-MODEL 122

Definition 3.2.

General processes part I—from tokens to sequences

Definition 3.2 defined a process as a mapping between single tokens. As it
currently stands, Definition 3.2 does not allow for multiple input and output.
However, we can modify Definition 3.2 by, instead of defining a process as
a mapping between single tokens, defining a process as a mapping between
sequences of tokens. On this view, a process with n inputs and m outputs is
modelled as a mapping from n-sequences of tokens (φ1, . . . , φn) to m-sequences
of tokens (ψ1, . . . , ψm). The individual members of the sequences correspond
to the individual inputs and outputs of the process. We can rephrase the
counterfactuals underlying the process as follows: if (φ1, . . . , φn) were presented
to the process, then (ψ1, . . . , ψm) would be yielded by the process.

Talk of sequences being ‘presented to’ or ‘yielded by’ a process can be
reduced to conditions involving their individual members being presented to
or yielded by the individual inputs and outputs of that process. Let us say that
if an n-sequence (φ1, . . . , φn) is ‘presented to’ a process, then φ1 is presented to
the first input, φ2 to the second input, . . . , and φn to the nth input. Similarly,
let us say that if an m-sequence (ψ1, . . . , ψm) is ‘yielded by’ a process, then ψ1 is
yielded by the first output, ψ2 by the second, . . . , and ψm by the mth output.

Three complications have not yet been considered. First, a general process
may receive some of its inputs at different times. Second, a general process may
yield some of its outputs at different times. Third, even if a general process

p3

p1

p2

p1 p2

p5

p4

p3

Figure 4.3: Unary vs. general computational processes.
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never receives all of its inputs, those that it does receive may still be sufficient
for it to yield an output. It takes some care to integrate these features into the
model. This integration is done in two stages.

First, we need to introduce a placeholder that is not itself a representation
token to represent the absence of an input or output token. This placeholder
signifies an empty member in an input or output sequence. It does not matter
what entity we choose as a placeholder, so long as that entity is not also needed
as a representation token. Assume that the empty set ∅ satisfies this condition.
We shall then say that if the placeholder ∅ is the ith member of an input or
output sequence, then the ith input or output to that process is empty. For
example, if we say that (φ1, ∅, φ3) is presented to a process, then we mean that
the token φ1 is presented to the first input of the process, nothing is presented
to the second input, and the token φ3 is presented to the third input. If we say
that (ψ1, ψ2, ∅) is yielded by a process, then we mean that ψ1 is yielded by the
first output of the process, ψ2 is yielded by the second output, and nothing is
yielded by the third output.

Second, we need to associate a sequence of time delays with each pairing
of I/O sequences. These time delays measure the time from the presentation
of the input to the yielding of each one of the outputs. If an input (φ1, . . . , φn)
is presented to a process, then each output ψi ∈ (ψ1, . . . , ψm) is yielded time
ti ∈ (t1, . . . , tm) after the input. These time delays are measured from the onset
of the whole of the input sequence because it is the whole of the input sequence
that is treated as the input to the process. If one wishes to consider cases in
which only a partial input is present, then one should consider I/O pairings that
contain the placeholder ∅ in the relevant places. Therefore, the counterfactuals
underlying a process can be rewritten as follows: if (φ1, . . . , φn) were presented
to a process, then ψi ∈ (ψ1, . . . , ψm) would be yielded time ti ∈ (t1, . . . , tm) after
the entire input was presented.

A possible objection to this account is that inputs and outputs with empty
members are not inputs or outputs at all. If some of the members of an input
are absent, then we do not have a partial input, we have an ill-formed input—
in other words, no input at all. If this objection were correct, then the model
above could be simplified. However, there are good reasons for thinking that
the objection is wrong. Decisions about well-formedness should be based on
our pre-existing intuitions about which inputs and outputs are valid inputs
and outputs of a computational process. In many cases, we do wish to say
that a computational process with n inputs performs a computation even if
only a proper subset of those inputs is ever used. Legislating otherwise seems
plain wrong. Judgements about well-formedness in natural language should be
based on pre-existing intuitions of native speakers. Similarly, judgements about
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well-formedness in computation should be based on pre-existing intuitions
about computation, not just on convenience and simplicity.

General processes part II—presenting input and yielding output

In the case of unary processes, we made sense of the presentation of input and
the yielding of output in terms of the presence of tokens in spatiotemporal
regions. The same approach can be used for general processes. However,
instead of associating a pair of spatiotemporal regions A, B with each process,
we can now associate two sequences of spatiotemporal regions (A1, . . . ,An),
(B1, . . . ,Bm) with each process. In this way, each input or output of the process
has its own associated spatiotemporal region. Let us say that a token φ is
‘presented’ to the ith input of a process just in case that token occurs in a
spatiotemporal Ai associated with that process. Let us say that a token ψ

is ‘yielded’ by the jth input of a process just in case that token occurs in a
spatiotemporal B j associated with that process. As with unary processes, there
is no restriction on the shape of these input and output regions: they can be
disjoint, identical, or overlap to some degree.

In Definition 3.2, we characterised a process by the ordered triple (Ω,A,B).
In the revised definition, we can still characterise a process by an ordered
triple, but this time by an ordered triple that involves sequences rather than
individuals. In Definition 3.2, the elements in the triple were: (i) the set of I/O
pairs and their time delays, (ii) the input region, and (iii) the output region. The
elements in the revised triple are: (i) the set of I/O sequences and their sequence
of time delays, (ii) the sequence of input regions, and (iii) the sequence of output
regions. Let us consider each element in turn.

Definition 3.2 stated that if a certain triple (φ,ψ, t) is a member of Ω then, if
φ were presented to the process, then ψ would be yielded after time t. In the
new definition, the set Ω is the set of I/O sequences and their sequence of time
delays. If a certain triple ((φ1, . . . , φn), (ψ1, . . . , ψm), (t1, . . . , tm)) is a member ofΩ,
then if (φ1, . . . , φn) were presented to a process, then ψi ∈ (ψ1, . . . , ψm) would be
yielded time ti ∈ (t1, . . . , tm) after the entire input was presented. The two other
members of the triple are A and B, the input and output regions. In the revised
definition, we can replace and A and B with the sequences (A1, . . . ,An) and
(B1, . . . ,Bm). Let A denote the sequence (A1, . . . ,An). Let B denote the sequence
(B1, . . . ,Bm). We can now define a general process in terms of the triple (Ω,A,B).

A triple (Ω,A,B) characterises a process with n inputs and m outputs just
in case for each ((φ1, . . . , φn), (ψ1, . . . , ψm)) ∈ Ω, if the token φ1 were present in
A1, φ2 were present in A2, . . ., and φn were present in An, then, no matter what
other input tokens are present in the input regions before or after φ1, . . . , φn, the
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token ψ1 would be present in B1 after time t1, ψ2 would be present in B2 after
time t2, . . ., and ψm would be present in Bm after time tm.

Definition 4.11. P (Ω,A,B) is a process with n inputs and m outputs iff ∀
((φ1, . . . , φn), (ψ1, . . . , ψm), (t1, . . . , tm)) ∈ Ω: if

φ1 were to occur in region A1

φ2 were to occur in region A2

...

φn were to occur in region An

then, no matter what other φ′i occur in A1, . . . ,An before or after φ1, . . . , φn:

ψ1 would occur in region B1 a time t1 after (φ1, . . . , φn)

ψ2 would occur in region B2 a time t2 after (φ1, . . . , φn)

...

ψm would occur in region Bm a time tm after (φ1, . . . , φn)

furthermore, we shall assume that processes are deterministic:

∀((φ1, . . . , φn), (ψ1, . . . , ψm), (t1, . . . , tm)), ((φ1, . . . , φn), (ψ′1, . . . , ψ
′
m), (t′1, . . . , t

′
m))∈ Ω,

1 ≤ i ≤ m, ψ′i = ψi and t′i = ti.

Note that in order to satisfy this definition a general process must have at
least one input and at least one output (i.e. n,m ≥ 1).

A shorthand for the statement that a process P yields an output (ψ1, . . . , ψm)
if presented with an input (φ1, . . . , φn) is: (φ1, . . . , φn) `P (ψ1, . . . , ψm).15

If the singleton sequence (α) is not distinguished from the entity α, then
Definitions 3.2, 4.1, and 4.2 can be shown to be special cases of their general
counterparts.

4.3.1 General representational processes

Now that general processes have been defined, it is relatively straightforward
to define general representational processes. Unary representational processes
were defined in Definition 4.1. General representational processes are defined
in a similar way:

15In analogy with the definition above, the `-relation is defined as follows: if P (Ω,A,B) is a
process with n inputs and m outputs then (φ1, . . . , φn) `P (ψ1, . . . , ψm) iff ∃(t1, . . . , tm) such that
((φ1, . . . , φn), (ψ1, . . . , ψm), (t1, . . . , tm)) ∈ Ω.
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Definition 4.12. P (Ω,A,B): Φ1 × . . .×Φn 7→ Ψ1 × . . .×Ψm is a representational
process under interpretation function I iff P is a process and:

1. Each φi ∈ Φi and ψ j ∈ Ψ j represents at least one thing, and out of those
things, interpretation function I picks out exactly one referent JφiKI or
Jψ jKI for each φi ∈ Φi and ψ j ∈ Ψ j (1 ≤ i ≤ n, 1 ≤ j ≤ m).

2. ∀(φ1, . . . , φn) and (φ′1, . . . , φ
′
n) ∈ Φ1 × . . .×Φn, if (φ1, . . . , φn) `P (ψ1, . . . , ψm)

and (φ′1, . . . , φ
′
n) `P (ψ′1, . . . , ψ

′
n) and 1 ≤ i ≤ n, Jφ′iKI = JφiKI, then 1 ≤ j ≤ m,

Jψ′jKI = Jψ jKI.

Definition 4.12, like Definition 4.1, has two conditions. Condition (1) of Defin-
ition 4.12 states that the input and output tokens of a representational process
have representational content. Condition (2) of Definition 4.12 states that rep-
resentational processes preserve relations between representational content:
if two sequences of input tokens (φ1, . . . , φn) and (φ′1, . . . , φ

′
n) have respective

members that represent the same thing, then their two sequences of output
tokens must also have respective members that represent the same thing. Intu-
itively, the representational content of the output of a general representational
process cannot vary without some variation in the representational content of
at least one of its inputs.

4.3.2 General computational processes

We are now in a position to define general computational processes. Un-
like unary computational processes, a general computational process can have
multiple inputs, multiple outputs, and be spanned by subprocesses that have
multiple inputs and outputs. Nevertheless, the definition of a general computa-
tional process is structurally similar to the definition of a unary computational
process, Definition 4.2. The difference lies in the way in which the terms ‘pro-
cess’ and ‘spanning’ are interpreted. The definition of a general computational
process is as follows:

Definition 4.13. P (Ω,A,B) is a computational process under interpretation
function I iff there are a finite number of representational processes p1, . . . , pn

under I such that:

1. p1, . . . , pn span process P.

2. p1, . . . , pn are simple processes.

3. Each pi operates on structured representations under I.
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Figure 4.4: A few of the many ways in which a general process can be spanned
by subprocesses: (1) the subprocesses can form parallel streams; (2) the output
of one subprocess can be the input of a subprocess upstream (feedback); (3)
the output of one subprocess can be the input of a subprocess downstream
(feedforward); (4) two subprocesses can share the same input or the same
output; (5) external inputs and outputs can be fed in or drawn out at various
stages.

The notions of ‘simplicity’ and ‘structured representation’ are pretty much
the same as those defined above. However, the notion of ‘spanning’ is not. The
notion of spanning for general processes permits much more complex relations
between subprocesses. This notion of spanning is defined below.

Spanning for general processes

Unary subprocesses can span a process in only one way, namely, by forming
a chain. The situation is a great deal more complex for general processes.
General processes have multiple inputs and outputs and can be spanned by
subprocesses that also have multiple inputs and outputs. This vastly increases
the number of spanning possibilities. Some of these possibilities are shown in
Figure 4.4: (1) the subprocesses can form parallel streams; (2) the output of one
subprocess can be the input of a subprocess upstream (feedback); (3) the output
of one subprocess can be the input of a subprocess downstream (feedforward);
(4) two subprocesses can share the same input or the same output; and (5)
external inputs and outputs can be fed in or drawn out at various stages.

Before defining spanning, a number of preliminary definitions are required:

Definition 4.14. If P is a process with u inputs and v outputs, then:

• args(P) is the set of natural numbers {1, . . . ,u}
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• vals(P) is the set of natural numbers {1, . . . , v}

• ini(P) is the ith input to P

• out j(P) is the jth output of P

These functions provide a convenient way in which to talk about the inputs
and outputs of processes. If we want to say that two subprocesses share an
input such that the ith input of subprocess Q is the jth input of subprocess
R, then we can say that ini(Q) = in j(R). If we want to say that two processes
share an output such that the ith output of subprocess Q is the jth output of
subprocess R, then we can say outi(Q) = out j(R). If we want to say that two
processes are connected in series such that the ith output of subprocess Q is
the jth input of subprocess R, then we can say outi(Q) = in j(R). If we want
to say that two processes are connected in a feedback relation such that the
ith input of subprocess Q is the jth output of subprocess Q, then we can say
ini(Q) = out j(Q).

These functions are convenient, however they should be used with care.
The ultimate constituents of the PR-model are the notions of representation,
spatiotemporal region, and counterfactual dependence. We have not accepted,
and will not accept, talk of inputs and outputs as basic. Therefore, such talk
cannot be left unanalysed. Some account has to be given in terms of the basic
constituents of the PR-model. This account is given in Appendix B. For the
moment, let us assume that such an account can be given, i.e. let us assume
that statements about inputs and outputs can be reduced to conditions only
involving representation tokens, spatiotemporal regions, and counterfactual
dependence. This allows us to focus on the main features of the definition
of spanning, rather than on the details of how talk about inputs and outputs
should be understood.

When we defined spanning for unary processes, we defined an operator ‘◦’
that joins two processes together. A similar operator can be defined for general
processes. Let us denote the joining operator for general processes by ‘�’. This
joining operator is defined as follows:

Definition 4.15. P = Q � R iff P, Q, R are processes and:

1. ∀i ∈ vals(Q) either:

• ∃ j ∈ args(R) such that outi(Q) = in j(R), or

• ∃ j ∈ vals(P) such that outi(Q) = out j(P), or

• ∃ j ∈ args(Q) such that outi(Q) = in j(Q).

2. ∀i ∈ vals(R) either:
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Figure 4.5: Four ways in which a process, P, can be composed of subprocesses,
Q,R, such that P = Q � R is true.

• ∃ j ∈ args(Q) such that outi(R) = in j(Q), or

• ∃ j ∈ vals(P) such that outi(R) = out j(P), or

• ∃ j ∈ args(R) such that outi(R) = in j(R).

3. Every unattached input of Q,R is an input of P and every input of P is an
input of either Q or R. Every unattached output of Q,R is an output of P,
and every output of P is an output of either Q or R.

4. The time delays of P equal those of Q and R combined.

Let us consider each condition of Definition 4.15 in turn.
The first condition of Definition 4.15 concerns the outputs of Q, the first

subprocess. It states that each output of Q can either be: (i) an input to R,
(ii) an output of the overall process P, or (iii) fed back to Q as an input. These
possibilities are illustrated in Figure 4.5. The second condition of Definition 4.15
concerns the outputs of R, the second subprocess. It states that each output of R
can either be: (i) fed back to Q as an input; (ii) an output of the overall process
P; (iii) or fed back to R as an input. These possibilities are also are illustrated in
Figure 4.5. The third condition of Definition 4.15 concerns unattached inputs
and outputs. It states every unattached input of Q,R is an input of P, and every
unattached output of Q,R is an output of P. The final condition of Definition
4.15 states that the times delays of the overall process P match up with those
of its component subprocesses. This is analogous to condition (3) of Definition
4.3, the definition of the unary joining operator, which required that t = t1 + t2.
Unfortunately, a similarly simple analytic expression cannot be given for the
time delays of general processes. However, by analogy with the unary case it
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should be fairly clear what is meant. In Appendix B, this condition is explicitly
spelt out in terms of the time delays of the individual processes.

In the unary case, if P = Q ◦ R, then there is only one way in which P, Q
and R can be connected: the output of Q must be the input of R, the input
of P must be the input of Q, and the output of P must be the output of R.
However, if P = Q � R, then not much can be inferred about the nature of the
connections between P, Q, and R. Therefore, it is not possible to deduce the
nature of the connections between P, Q, and R merely from the information
that P is spanned by Q and R. The reason why this is the case is that there
is more than one way in which P can be spanned by Q and R. The first three
clauses of Definition 4.15 specify the ways in which Q and R can be connected
so as to span P. The first two clauses of Definition 4.15 have three subclauses,
at least one of which needs to be satisfied by each output of Q and R. However,
there is no way of knowing which subclause is satisfied from the information
that at least one subclause is satisfied. Therefore, there is no way of knowing
the exact nature of the connections between the subprocesses from a statement
about spanning. For general processes, the details of how subprocesses are
connected—which input is connected to which output, and so on—cannot be
inferred from spanning.

Note that although at least one subclause of the first two conditions of
Definition 4.15 needs to be satisfied, there is nothing to prevent more than one
subclause being satisfied. For example, an output of Q may both be an input to
R and fed back as an input to Q. An output can be shared between more than
one input/output, and an input can be shared by more than one input/output.

Definition 4.15 suggests at least two kinds of special case. First, it is possible
for all of Q’s outputs to satisfy only the second subclause of condition (1). In this
case, the two subprocesses form two parallel streams. Instead of the outputs
of Q feeding into R, they feed directly into the outputs of P. Second, it is
conceivable that all of R’s outputs satisfy only the third subclause of condition
(2) in Definition 4.15. In this case, process R forms an ‘island’: it receives input,
but does not contribute to the overall output of the process. Islands make
no difference to the overall I/O behaviour of a process. Should such islands
be allowed? Although islands make no difference to overall I/O behaviour,
they can be important. For example, islands can mark aspects of structure that
classify it as one of a type, they can mark vestiges of a previous structure, or
they can mark sites that can be expanded into a new structure. It is worth
remembering that it is a notion of computational structure that we wish to
capture by the PR-model, not a notion of overall I/O behaviour.

Like ‘◦’, the joining operator for general processes is not commutative. If
P = Q � R, then it may not be that P = R � Q. Also like ‘◦’, ‘�’ is associative:
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Figure 4.6: Examples of two special cases of P = Q � R. Both are legitimate
cases of spanning. The left hand case is a parallel architecture. The right hand
case is an architecture with an island.

if P = (Q � R) � S, then P = Q � (R � S), and vice versa. This means that
brackets are not needed in specifying multiple joins. There is no need to write
P = ((Q � R) � S) � . . . � Z, we can write P = Q � . . . � Z.

Now that a joining operator for general processes has been defined, we can
define the spanning relation for general processes. General processes p1, . . . , pn

span P just in case the individual pi are joined together by the general joining
operator defined above. Therefore, the spanning relation for general processes
is defined as follows:

Definition 4.16. Processes p1, . . . , pn span a process P iff P = p1 � . . . � pn.

Definition 4.16 is structurally similar to the Definition 4.4, the definition
of spanning for unary processes. However, as we saw above, for general
processes, unlike for unary processes, not much can be inferred about the
detailed nature of the connections between the individual processes from a
statement about spanning.

Also unlike unary processes, the general processes p1, . . . , pn that satisfy a
spanning relation need not form an ordered sequence. There may be no or-
dering relation between the subprocesses, but as long as they satisfy Definition
4.16, they count as spanning.

A final point is that if the singleton sequence (α) is not distinguished from
the entity α, then Definition 4.4 can be shown to be a special case of Definition
4.16.
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4.4 Conclusion

This concludes the construction of the PR-model. Definition 4.16 is the final
piece needed to complete the definition of a computational process, Definition
4.13. We now have a semantic account of what we mean when we say that
a process is computational. What remains to be done are two things, we
need to: (1) justify the semantic model by showing how it can handle real-
world examples of computation talk; and (2) extend the model to give an
account of computational identity—an account what we mean when we say
that two computations are the same or different. These two tasks occupy the
next chapter.



Chapter 5

Applications

In the first part of this chapter, I show how the PR-model can be applied to real-
world examples of computation talk. The examples discussed include some
of the main types of computation used by cognitive science—asynchronous,
connectionist, stateful, recursion-based, high-level, and so on. In the second
part of this chapter, I show how the PR-model can be applied to claims about
computations being the same or different. An account, based on the PR-model,
is given of what it means for two computations to be the same or different.
Finally, a brief discussion is given of the pragmatics of computation talk.

5.1 Examples of the PR-model

5.1.1 Synchronous computation

The definitions in the previous sections were silent about the relative timings
of the subprocesses that make up a computation. The vast majority of com-
putations with which we are familiar are synchronous: they are regulated by
a central clock and each subprocess is executed, in either parallel or serial,
in strict lock-step. However, it is perfectly possible to have an asynchronous
computation: a computation in which subprocesses proceed at their own rate.
Creating electronic computers with asynchronous architectures is an active re-
search area.1 It is unknown whether the computations performed by the brain
are synchronous or asynchronous. There currently seems little evidence for a
central clock that would regulate all computations across all parts of the brain.

In a synchronous design, each subprocess of a computation has an extra
‘clock’ input. The subprocesses are sensitive to the clock input so that they,
for example, wait to produce their output until the clock state changes, or

1See Nowick et al. (1999) and references.
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wait to accept their input until the clock state changes. Note that synchronous
architectures can be either serial or parallel. Parallel synchronous computations
are used inside modern CPUs where many operations can take place within a
single clock-cycle.2

5.1.2 Clerk-style computation

One example of computation is the evaluation of a mathematical function us-
ing an electronic pocket calculator. The situation is familiar: one evaluates
the function by performing a sequence of basic mathematical operations un-
til an output representing the value of the function is obtained. The evalu-
ation proceeds step-by-step using a sequence of basic operations. If the right
basic operations are performed in the right order, then the function is calcu-
lated. An example is shown in Fig. 5.1 of a process that evaluates the function
f (x) = x2 + 1 . The input to the process is a representation of the argument of
the function, the output of the process is a representation of the value of the
function. Intermediate tokens represent intermediate values of the calculation.
All pocket-calculator-style computations are of this type. It should be clear that
these processes satisfy Definition 4.13—in each case they are made up of a finite
number of simple subprocesses connected in the ways described. So Definition
4.13 correctly classifies these processes as computational.

The example also shows that Turing’s informal no- x
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+
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Figure 5.1: x2 + 1

tion of computation satisfies Definition 4.13. Turing’s
notion of computation involves a human clerk calculat-
ing a mathematical function by hand without using un-
due insight or ingenuity. The situation is similar to that
of the pocket calculator. The difference is that instead
of performing the basic operations using an electronic
calculator, the clerk performs the basic operations in his
head. The clerk case, like the pocket calculator case, sat-
isfies Definition 4.13. It may be objected that addition
and multiplication are too complex to count as opera-
tions that can be performed without insight or ingenuity.
These operations may, arguably, need to be broken down into simpler opera-
tions (e.g. unary addition). This can be done by replacing the processes above
with an arrangement of simpler processes. Such a change means that the com-
putational structure of the clerk case differ from the pocket calculator case, but
it does not affect the overall status of what the clerk does as a computation.

Note that although the clerk satisfies Definition 4.13, not all processes that
satisfy Definition 4.13 need be clerks. There can be processes that count as

2See Hennessy and Patterson (1998), 436–440.
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computational but which cannot be performed by a human clerk, e.g. massively
parallel processes. This allows us to respect the claim of Chapter 1 that although
Turing’s definition extensionally captures the class of computational functions,
it does not adequately capture all the ways in which those functions could
be computed. Any method that the clerk uses to calculate the value of a
mathematical function counts as computational, but there may be legitimate
computational methods that elude him.

5.1.3 An adder

The previous example treated addition as a computational simple. However,
one might legitimately ask how such a process could work: how can a physical
process perform addition? Computation provides an answer.

Figure 5.2 shows one implementation of a 1-bit adder. A 1-bit adder is a
process that computes the sum of two 1-bit numbers (e.g. 0 or 1). The process
shown in Figure 5.2 has three inputs, a, b, cin, representing the two input
numbers and a carry flag respectively. The process has two outputs, z, cout,
representing the binary sum and the output carry flag. Each input or output
can represent either 0 or 1. The process yields outputs that represent the sum
of its inputs. Output z represents the first digit of the sum of a, b, and cin, and
output cout represents the second (or carry) digit of the sum.

a b cin cout z
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 5.1: Truth table for a 1-bit adder.

The 1-bit adder shown in Figure 5.2 is implemented using XOR, AND and
OR gates, but a 1-bit adder can be implemented in many other ways. For ex-
ample, a 1-bit adder can be implemented using just AND, OR, and NOT gates.
It is a general result that if a truth table characterises the I/O behaviour of a
system, then an implementation of that system can be constructed that uses just
AND, OR, and NOT gates. This result is a consequence of the general result
that any Boolean formula can be put into a form that only uses conjunction,
disjunction, and negation—disjunctive normal form. The truth table for a 1-bit
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Figure 5.2: A 1-bit adder. a and b represent two 1-bit numbers, z represents
their sum. cin and cout represent the input and output carry flags of the addition.

adder is given in Table 5.1. The corresponding disjunctive normal implementa-
tion of a 1-bit adder would involve, for each output, a collection of AND gates,
some preceded by NOT gates, whose outputs feed into one big OR gate.3

There are a number of ways adding numbers larger than 1-bit. One way
is to draw up a truth table for an n-bit adder, and then use the disjunctive
normal method described above to deduce a collection of AND, OR, and NOT
gates that implement that system. As with the 1-bit adder described above,
this implementation would involve, for each output, a collection of AND gates,
some preceded by NOT gates, whose outputs feed into one big OR gate.

Another way of making an n-bit adder is to connect a series of 1-bit adders
together, so that the output carry flag of one 1-bit adder feeds into the input
carry flag of another. This is called a ‘ripple’ adder. The individual 1-bit adders
could be implemented in any way one pleases: they could be those pictured
in Figure 5.2, or the disjunctive normal type described above, or yet another
design. A ripple adder computes addition in a slow way: it has a minimum
gate delay of 2n. In contrast, the disjunctive normal implementation of an n-bit
adder described above operates in parallel and has a small fixed gate delay
of 3.4

Another way of building an n-bit adder is to construct a ‘lookahead’ adder.
A lookahead adder consists of a series of modified 1-bit adders and a lookahead
unit. The 1-bit adders have two additional outputs, ‘generate’ and ‘propagate’.
These outputs feed into the lookahead unit and are used to calculate the carry

3See Hayes (1993), 203–205. Note that even AND, OR, and NOT gates are not necessary.
According to the result above, any process whose I/O behaviour can be characterised by a truth
table can be implemented using just NAND gates. NAND gates are to the Sheffer stroke as AND,
OR, and NOT gates are to conjunction, disjunction, and negation. Hence, we have another way in
which a 1-bit adder can be implemented.

4See Hayes (1993), 367–368 for a comparison of the two adders.
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Figure 5.3: A 4-bit ripple adder. Each input and output represents either 0 or
1. a1, . . . , a4 and b1, . . . , b4 represent two 4-bit numbers, and z1, . . . , z4 represents
the 4-bit number which is their sum. cin and cout represent the input and output
carry flags of the addition.

states as early as possible. The details of the implementation of the lookahead
unit are complex, but the lookahead unit computes the following Boolean
function:

c1 = G0 + P0.c0

c2 = G1 + P1.G0 + P1.P0.c0

c3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.c0

c4 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.c0

...

An implementation of a lookahead adder is shown in Figure 5.4. The lookahead
unit can be implemented in many different ways. One could, for example, use
the disjunctive normal method described above to implement it using AND,
OR, and NOT gates. However, there are other alternatives.5

Each of the n-bit adders described above illustrates a different way in which
the same function, the addition function, can be computed. It should be clear
that each of these ways satisfy Definition 4.13.

5.1.4 Connectionist computers

Connectionist computers consist of a collection of simple processes (neurons)
connected together to form a network. The behaviour of the neurons, and
the arrangement of their connections, can vary from one connectionist system
to another. An example is shown in Figure 5.5.6 The neurons have multiple
inputs and multiple outputs, and compute two simple functions: their ‘activa-

5See Hayes (1993), 369–371.
6See Rumelhart et al. (1986) for others.
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Figure 5.4: A 4-bit lookahead adder. The I/O behaviour of the lookahead
process is described in the text. A possible implementation is given in Hayes
(1993), 371.

tion’ function and their ‘output’ function. The neurons also contain a stateful
element, called their ‘activation state’ (see Section 5.1.6 for stateful elements).
Neurons receive input, and based on a weighted sum of those inputs and their
current activation state, they yield output. This is done in two stages: (i) the
activation function maps a weighted sum of the values of their inputs and their
current activation value to a new activation value, and (ii) the output function
maps the current activation value to an output value that is yielded by all their
outputs. The weighting given to each input is regarded as one of the most
important features of the network. In learning systems, the weighting of each
input is adjusted in a ‘learning phase’, until the network as a whole exhibits the
right behaviour.

The details of how neurons are implemented are usually omitted from the
specification of a connectionist system: all that matters is that a unit with the
right I/O behaviour exists. The I/O behaviour of an individual neuron is typ-
ically very simple. Although their I/O behaviour is simple, if the neurons are
connected in the right ways, and weigh their inputs in the right ways, then the
I/O behaviour of the network as a whole can be complex. Connectionist net-
works appear to capable of providing a mechanism for how complex cognitive
processes, such as pattern recognition, could work.7

Connectionist systems clearly satisfy the spanning requirement because as

7For a discussion of these kinds of explanations, see Bechtel and Abrahamsen (1991).
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Figure 5.5: A simple connectionist network (intermediate arrowheads are omit-
ted in order to aid legibility; the flow of the process is from left to right).

described above they are an interconnected collection of computational simples
(neurons). However, in order to qualify as computational processes they also
need to satisfy the requirement that the inputs and outputs of their compu-
tational simples are representations. This last point requires some discussion
because it may appear to conflict with some descriptions of connectionist sys-
tems.

Connectionist systems are sometimes described as not requiring represent-
ations for the inputs or outputs of individual neurons. Representations, if they
occur at all, appear only as features of the network activity as a whole. But
this characterisation of connectionist computation is misleading. The inputs
and outputs of individual neurons do represent. Typically, the input or output
activity of a neuron represent either activity off (‘0’), activity on (‘1’), or an inter-
mediate value of activity (e.g. ‘0.34’). The connectionist might object that the
input or output of a neuron does not represent activity, it is the activity. This
objection is based on a possible confusion. Normally, the question of whether
an input or output represents or is the activity does not arise, because typically
it does both: it both has activity, and it represents activity of a proportion-
ate degree. However, these two properties can come apart, and it is only the
representational content that matters to the system’s status as performing a
computation.

Suppose that a neuron can receive one of two types of signal as input: a 0 V
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signal or a 5 V signal. Intuitively speaking, a 5 V signal has more ‘activity’ in
it than a 0 V signal. Therefore, we might choose to adopt the representational
convention that a 5 V signal represents activity on (or ‘1’), and a 0 V signal
represents activity off (or ‘0’). However, there is nothing inherently necessary
about this convention. We could just as well choose to interpret a signal of 5 V
as representing activity off, and a signal of 0 V as representing activity on. Or,
we could choose a more complex convention, such as one that maps voltages
to levels of ‘activity’ in a non-linear fashion. No matter what convention we
choose, it is representational content that matters both to the computational
identity of the network, and to its status as performing a computation. As
we saw in Section 4.2.2, unless the simple components of a computation have
representations as their input and output, we cannot make sense of computation
or computational identity. Therefore, if a connectionist network performs a
computation, its simple processes (neurons) must operate on representations.

A connectionist might object that her model can explain how a cognitive
process works in a different way. Connectionist models, interpreted as dy-
namical systems, provide a mechanism for how an input can be systematically
transformed into an output. In this case, the network is described in terms of
spreading patterns of activation, continuous dynamic relations, and ‘relaxation’
into stable states. This kind of explanation is not committed to representation
at the level of individual neurons. However, neither is it a specifically compu-
tational explanation. A theory such as this—a dynamical systems theory—may
be true, and it may be able to explain how certain aspects of the mind work,
but it is not thereby computational.8

5.1.5 Stored program architectures

Inside a stored program computer, in addition to data representations, there
are also program representations. The purpose of a program representation
is to modify the overall function computed by the system. Depending on the
program representation presented to the system, the system performs a different
I/O function on its data. The mechanism via which program representations
affect data representations is called the ‘control’ process. The control process
takes programs as input and yields signals to the subprocesses in charge of data
representations as output. These signals could be ‘0’ or ‘1’ messages that turn
certain subprocesses on or off, and thus alter the processing of the data. An
example of a stored program computer is shown in Figure 5.6.9

8See Hinton and Sejnowski (1986); Hopfield (1982). van Gelder (1995) advocates a purely
dynamical systems approach to the mind.

9Real-world stored program computers are complex, but they satisfy the same general prin-
ciples. For a discussion, see Hennessy and Patterson (1998), 338–388.
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Figure 5.6: A stored program computer. A program representation is shown
on the right hand side, and process that operate on data representations are
shown on the left. The control unit, ctrl, mediates the interaction between the
two.

The I/O behaviour of a control unit is complex, and its implementation is
often non-trivial. In many electronic computers, a great deal of effort goes into
the efficient implementation of a control unit. However, if the behaviour of the
control unit can be specified using a truth table, then the disjunctive normal
method described above can be used to find an implementation using AND,
OR, and NOT gates.10

The way in which this discussion has been phrased may give the erroneous
impression that processes are somehow ‘stationary’, and representations, such
as programs, somehow ‘move’. But nothing about the PR-model requires this.
It need not be that program representations, for example, move around outside
a control unit. Program representations could stay in the same spatial location,
and the control process could operate on them in-place, perhaps modifying
them to turn them into tokens with different representational content.

5.1.6 Memory, state, and constants

An example of a constant representation is the representation of 1 in the com-
putation of f (x) = x2 + 1 shown in Figure 5.1. This representation has the same
content, and plays the same role in the computation, no matter what input is
presented to the process. There are several ways in which constants can be im-
plemented. One way is to treat constants as extra inputs to the overall process.
This is what is done in the clerk-style computation shown in Figure 5.1. Another
way is to build the constant into the operation performed by a computational

10For discussion of how to implement control units using logic gates and other computational
simples, see Hennessy and Patterson (1998), 389–410, and Appendix C.
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simple. This is shown in the left hand diagram in Figure 5.7. Another way is to
add a memory to the system into which constants, and other representations,
can be stored and recalled. This is shown in right hand diagram in Figure 5.7.

×
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x2+1

×
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x2+1

Rcl1 memory

location

Figure 5.7: Two implementations of adding a constant.

Memory processes such as those shown in Figure 5.7 are stateful: their
output depends, not just on their current input, but also on their past input.
Another example of a stateful process is a neuron of a connectionist system: a
neuron’s current activation state depends on its past activation state as well as its
current input. How can a stateful process be implemented? Stateful processes
are often implemented as spanning collections of non-stateful processes. This is
how memory is typically implemented in electronic computers. Here are some
examples.

An RS-latch is a process that stores one ‘bit’ (a binary digit) of information.
An RS-latch consists of two NAND gates, as shown in Figure 5.8. The bit of
information stored by the RS-latch is represented by the state of voltage signal
φ. The inputs to the process, S and R, are used for setting and resetting the
state of φ. If 5 V is presented to S and 0 V is presented to R, then φ is set to 5 V.
If 5 V is presented to R and 0 V is presented to S, then φ is reset to 0 V. If 5 V is
presented to both S and R, then the state of φ is recalled without changing φ.
The overall output of the RS-latch, dout, provides access to the voltage φ. If dout

is 0 V then we say that the latch is ‘open’, if dout is 5 V, then we say that the latch
is ‘closed’. (The voltage φ is the inverse of φ: φ is high when φ is low, and low
when φ is high). Even though an RS-latch uses only non-stateful components,
NAND gates, it is itself a stateful process, i.e. its output depends on past as
well as current input. Therefore, an RS-latch can be used as a storage device.
If several RS-latches are connected together, then multiple bits of data can be
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Figure 5.9: A static RAM cell.

stored.11

An RS-latch is an asynchronous process—it does not require a clock signal.
There are a number of practical problems with using asynchronous components
in a complex design. Therefore, in most electronic computers synchronous
components are preferred. An example of a synchronous storage process is a
JK flip-flop. A JK flip-flop has three inputs: J, K, and an input for a clock signal.
The J and K inputs behave in similar way to the S and R inputs on an RS-latch.
If 5 V is presented to the J input and 0 V is presented to the K input, then on
the next clock tick the flip-flop is closed (dout = 5 V). If 5 V is presented to the K
input and 0 V is presented to the J input then on the next clock tick, the flip-flop
is open (dout = 0 V). If 0 V is presented to both the J and K inputs, then on the
next clock tick the flip-flop’s state is recalled without change. Multiple flip-
flops can be connected together to store multiple bits of data. JK flip-flops are
the most common way in which stateful parts of CPUs, such as their registers,
are implemented.12

Another example of a stateful process is a RAM cell. Computer RAM is
typically made up of an array of simple memory cells. There are many different
designs of RAM cells, but the most common designs are based on the static RAM
cell shown in Figure 5.9. The static RAM cell is an asynchronous component,
but RAM cells are usually accessed in groups in a way that involves a clock
signal.13

These three computational processes—the RS-latch, the JK flip-flop, and
the static RAM cell—provide three examples of how stateful processes can be
implemented using non-stateful components.

11For a full description of RS-latches, see Hayes (1993), 409–412.
12For a full description of JK flip-flops, see Hayes (1993), 432–439.
13For a full description of RAM cells, see Katz (1994), 357–373.
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Figure 5.10: A JK flip-flop.

5.1.7 Recursion-based computation

Recursion is a distinctive way of performing a computation. A recursive com-
putation involves a computational element that ‘calls itself’. A well-known
example of a recursive computation is the following algorithm for computing
the factorial function:

fact(x){

if x = 1 then return 1

otherwise return x times fact(x-1)

}

Recursion requires two elements: (1) a con-

ctrl

x

fact

x!

x

x.fact(x−1) or 1

Figure 5.11: f (x) = fact(x)

trol structure that allows functions to be
called; and (2) self-reference that allows
functions to call themselves. A recursive
computational process that implements the
factorial function is shown in Figure 5.11.
The process involves two subprocesses: a
control subprocess and a factorial subpro-
cess. The control subprocess calls the factorial subprocess by sending it an
input x that represents the number whose factorial is to be calculated. The
factorial subprocess has the following I/O behaviour: if its input is a token that
represents 1, then its output is a token that represents 1; otherwise, its output
is a token that represents the string of characters px. f act(x − 1)q, where x has
been substituted for appropriately. If the control process receives a string of
characters from the factorial process then it parses those characters and acts
on what they say, i.e. it calls the factorial function and multiplies the result by
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the value of x. If the control process receives a token that represents 1 from
the factorial process, then it performs the final multiplication and outputs the
result.

This is just one example of a recursive computation, but other recursive
computations are implemented in a similar way. It should be clear that such
processes satisfy Definition 4.13. Hence, the PR-model provides a way in which
to accommodate recursive computation.

5.1.8 Higher-level computational systems

The examples in the previous sections focused on low-level computation. In
some cases, the most complex processes involved were logic gates. However,
there is no reason why computation should be restricted to this level. As dis-
cussed in Section 4.2.3, an important feature of our computation talk is that
potentially any process can be ‘black-boxed’ and treated as a computational
simple. Simple processes need not be logic gates, they can be as complex as one
likes so long as no question arises about how they work. This condition could
be satisfied in a number of ways. It could be that we wish to maintain a studied
neglect about how certain processes work; it could be that certain processes are
already well-understood and we do not wish to explain them again; it could
be that certain processes are not understood at all and wish to treat them as
primitives; or it could be that certain processes are the responsibility of some
other field of investigation. Whatever the reason, changes in our explanat-
ory standards, viz. black-boxing, results in the creation of new computational
simples. The PR-model does not privilege any level of computation. It allows
for genuine computation to take place at any level of abstraction explanatory
standards allow.

client server

Figure 5.12: An example of a high-level computation.

The terms ‘low-level’ and ‘high-level’ are not intended to mark a qualitative
distinction between different types of computation. The two names are just
rough markings of different positions on a scale of explanatory standards. The
term ‘low-level’ is roughly associated with explanations that treat logic gates
as computational simples. The term ‘high-level’ is roughly associated with
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explanations that treat more complex processes as computational simples. As
stated above, neither level is inherently more privileged than any other from
the point of view of the PR-model.

It is worth mentioning that black-boxing provides a way in which a single
physical system can perform more than one computation. As we saw in Section
4.2.1, a process can be spanned by more than one sequence of representational
subprocesses. Furthermore, we saw that if Q,R are spanning representational
subprocesses, then Q◦R is also a spanning representational subprocess, and so
consequently a candidate for a new computational simple. Hence, by changing
one’s explanatory standards (e.g. switching from ‘low-level’ to ‘high-level’),
one can potentially see the same system as performing more than one computa-
tion. In less contentious language: there may be many different computational
descriptions—each of which attributes a different computational structure to a
system—all of which are true, but under different explanatory standards.

5.1.9 Distributed computation

There is nothing in the PR-model that assumes that component subprocesses
are physically close to each other. The subprocesses can be distant, they can
even take place in different bodies, so long as they are linked by the spanning
relations and counterfactual dependencies described. A single computation
can be distributed over a number of spatial locations. There are many real-
world examples of this: the computation performed by the SETI project, which
is split over thousands of PCs worldwide; the computation performed dur-
ing an international bank transaction, which is split across different countries;
render farms, which render motion pictures over many different machines; and
computations that take place on the internet, such as browsing the world wide
web.14

Clark (1997), Clark and Chalmers (1998), and Hutchins (1995) argue that
our cognitive processes can extend beyond the boundary of our skin/skull:
cognitive processes can involve the environment, tools, and other people. The
PR-model can accommodate these cases of extended cognition as cases of dis-
tributed computation. On this view, the computations involved in cognition
need not take place entirely inside the body, they can be distributed between
the body and the environment.

14For details of the SETI project, see http://setiathome.berkeley.edu. For distributed com-
putation in general, see Tanenbaum and van Steen (2002).

http://setiathome.berkeley.edu
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5.2 The semantics of computation talk

How do we know that the PR-model is a good model of our computation talk?
Like any semantic theory, the PR-model has to be judged on two grounds:
whether it fits with our pre-existing semantic intuitions, and its possible pay-
offs for other projects.

We saw in Section 5.1 that the PR-model can accommodate intuitions about
a number of key examples of computation talk. The PR-model can also accom-
modate a number of more general intuitions about computation. For example,
the PR-model can accommodate the intuition that computation involves rep-
resentation, that computations are made up of parts, that computations are
in a certain sense finite, that computations can be chained together, and that
computation can explain how a process works. However, this intuition-based
evidence is not decisive. First, it is conceivable that there are other models that
can accommodate the same intuitions just as well. Second, our intuitions about
what we mean by our computation talk are not themselves precise, and so it is
difficult to judge how well a formal model like the PR-model fits them. Third,
our intuitions about what we mean by our computation talk are, to some extent,
malleable. They can be adjusted if we have good reasons for doing so, and so
such evidence is not incontrovertible. Consequently, our pre-existing semantic
intuitions cannot tell decisively in favour of the PR-model.

It is on the second criterion—the possible pay-offs of the PR-model—that
the merits of the model should ultimately be judged. In the remainder of this
chapter, and the next, I show that the PR-model has two desirable pay-offs.
First, the PR-model gives a clear and intuitively satisfying account of the iden-
tity conditions of computations. Second, the PR-model shows how realism
about computation is possible. This enables us to solve the two problems
raised in Chapters 1 and 2: what the individuation conditions of computations
are, and how we can be realists about cognitive science. It is pay-offs like
these—answers to metaphysical problems and anti-realist challenges—that are
the primary motivations for the PR-model. It is not unusual that once linguistic
intuitions are broadly satisfied, the adoption of one semantic model over an-
other is decided by its pay-offs for wider projects. Two famous examples are
Russell’s (1905) and Quine’s (1980b) semantic treatment of non-referring terms
(‘the present King of France’ and ‘Pegasus’). For both Russell and Quine, their
respective semantic models were motivated as a way of solving a metaphysical
problem about apparent commitment to non-existing entities.
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5.2.1 When a computation is performed

The PR-model gives an account of what we mean when we say that a system
performs a computation. When we say that a system performs a computation,
what we mean is that, inside that system, there is a computational process
as defined by Definition 4.13. In other words, inside that system there is a
spanning collection of explanatorily-simple representational subprocesses. For
example, when we say that electronic calculator performs a computation, what
we mean is that inside the calculator there is a sequence of simple representa-
tional processes, connected so as to make an overall process that calculates the
value in question. Briefly put, a system performs a computation just in case it
satisfies Definition 4.13.

This theory can be compared to the views of Chalmers (1996), Copeland
(1996), and Mellor (1991a). According to Chalmers, a system performs a com-
putation just in case there is mapping of distinct spatial regions of that system to
the states of a CSA. According to Copeland, a system performs a computation
just in case there is an honest model of a formal specification of that system.
According to Mellor, a system performs a computation just in case that system
contains a causal process whose inputs and outputs represent propositions.

It is worth noting that the PR-model does not attempt to provide an account
of computation talk that is synonymous with our everyday talk of computation.
The aim of the PR-model is to capture the propositional content expressed by our
computation talk. The PR-model does not attempt, for example, to capture the
force, tone, or ideas associated with that talk. The reason why propositional
content is important to capture is that it is the aspect of meaning relevant to our
primary interest: the truthmakers of computation talk. Propositional content is
exactly that aspect of meaning that is at stake in the realist/anti-realist dispute
about computation.

5.2.2 When two computations are the same

What do we mean when we say that two computations are the same or different?
In Section 3.1.2, a key intuition was identified: two computations are the same
just in case they have the same parts and those parts are connected in the same
ways. I claimed that this intuition is the core of our notion of computational
identity. However, this intuition, by itself, is not an account of computational
identity. This is because the intuition does not explain what is meant by the
‘parts’ of a computation, what is meant by two parts being the ‘same’, or what
is meant by two parts being connected in the ‘same’ ways.

The PR-model provides answers to these questions. The PR-model enables
us to flesh out the intuition into a substantial account of computational identity.
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This is done in the following way. First, the ‘parts’ of a computation are its
spanning subprocesses. Second, two ‘parts’ are the ‘same’ just in case the
two subprocesses are I/O equivalent. Finally, two ‘parts’ (i.e. subprocesses) are
connected in the ‘same’ ways just in case their inputs and outputs are connected
to the respective inputs and outputs of I/O equivalent subprocesses.

A number of aspects of this notion of computational identity have already
been introduced. For example, it has already been argued in Section 4.2.2 that
the identity-determining parts of a computation are its spanning subprocesses.
It was also argued in Section 4.2.2 that those identity-determining parts must be
representational processes. What remains to be done is to define the notions of
I/O equivalence and ‘being connected in the same way’. Once these notions are
defined, then an account of computational identity along the lines described
above can be achieved.

I/O equivalence

In Section 4.2.2, the core intuition underlying the notion of I/O equivalence was
introduced. This intuition was that two processes are I/O equivalent just in
case they map the same representational content to the same representational
content. This intuition can be formalised in the following way.

Consider two representational processes P and Q. Suppose that process
P, if presented with a token φ, would yield a token ψ as output. Suppose
that process Q, if presented with a token ρ, would yield a token σ as output.
The tokens φ, ρ and ψ, σ need not have any physical properties in common—
processes P and Q may operate in different physical media. Nevertheless, it is
possible for the two processes to be I/O equivalent. Suppose that both φ and
ρ represent α, and both ψ and σ represent β. If this is true, then although the
tokens of the two processes may not have any physical properties in common,
the representational content of their input and output tokens is shared. Both
process P and process Q map an input that represents α to an output that
represents β. In other words, the two processes map the same representational
content to the same representational content. Formally:

Definition 5.1. Two unary representational processes P (ΩP,A,B), Q (ΩQ,C,D)
are I/O equivalent under interpretation function I iff:

1. ∀(φ,ψ, t) ∈ ΩP, ∃(ρ, σ, t′) ∈ ΩQ such that JφKI = JρKI, JψKI = JσKI.

2. ∀(ρ, σ, t) ∈ ΩQ, ∃(φ,ψ, t′) ∈ ΩP such that JφKI = JρKI, JψKI = JσKI.

Clause (1) of Definition 5.1 states that for every I/O pairφ,ψ of P, if φ represents
α and ψ represents β, then there is an I/O pair of Q, say ρ, σ, for which ρ
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represents α and σ represents β. Clause (2) is the converse of clause (1): for
every I/O pair ρ, σ of Q, if ρ represents α and σ represents β, then there is
an I/O pair of P, say φ,ψ, for which ψ represents α and ψ represents β. The
relation of I/O equivalence is symmetrical: if P is I/O equivalent to Q, then Q
is I/O equivalent to P. It is easy to show that the relation is also transitive and
reflexive, and hence that it is an equivalence relation.

Note that the time delays of P and Q do not affect I/O equivalence. Two
representational processes can have different time delays—one may be fast and
the other slow—and both be I/O equivalent. This allows us to make sense of
the idea that there are faster and slower ways of computing the same function.

It is straightforward to extend Definition 5.1 to cover general representa-
tional processes. Two general representational processes are I/O equivalent
just in case, for each sequence of I/O pairs of one process, the representational
content of each member of that sequence is the same as the representational
content of the corresponding member of some sequence of I/O pairs for the
other process.

Definition 5.2. Two representational processes P (ΩP,A,B), Q (ΩQ,C,D) are
I/O equivalent under interpretation function I iff:

1. ∀((φ1, . . . , φn), (ψ1, . . . , ψm), (t1, . . . , tm)) ∈ ΩP,
∃((ρ1, . . . , ρn), (σ1, . . . , σm), (t′1, . . . , t

′
m)) ∈ ΩQ such that, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

JρiKI = JφiKI, Jσ jKI = Jψ jKI.

2. ∀((ρ1, . . . , ρn), (σ1, . . . , σm), (t′1, . . . , t
′
m)) ∈ ΩQ,

∃((φ1, . . . , φn), (ψ1, . . . , ψm), (t1, . . . , tm)) ∈ ΩP such that, 1 ≤ i ≤ n, 1 ≤ j ≤ m,
JρiKI = JφiKI, Jσ jKI = Jψ jKI.

This completes the definition of I/O equivalence. Let us now turn to the
other component of computational identity: the condition that the two relevant
collections of subprocesses are connected in the same way.

Being connected in the same way

There is only one way in which a sequence of unary subprocesses can be con-
nected, namely, in a chain. Two unary subprocesses are connected in the same
way just in case they occupy the same positions in their respective chains. The
order of the subprocesses in their chain can be inferred from their spanning
predicate. If P = p1 ◦ . . . ◦ pn, then computational process P is made up of sub-
process p1 followed by subprocess p2, . . . , followed by subprocess pn. Therefore,
if P = p1 ◦ . . . ◦ pn and Q = q1 ◦ . . . ◦ qn, then the respective subprocesses, pi and
qi, of P and Q are ipso facto connected in the same ways.
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Figure 5.13: Two unary computational process whose subprocesses are connec-
ted in the same way.

Our core intuition about computational identity is that two computations
are the same just in case they have the ‘same’ parts, and those parts are con-
nected in the ‘same’ ways. The ‘parts’ of a computation are its spanning
subprocesses. Two ‘parts’ (subprocesses) are the ‘same’ just in case they are I/O
equivalent. Now we can say what it means for two unary ‘parts’ (subprocesses)
to be connected in the ‘same’ ways in their respective computations. Two un-
ary subprocesses pi and qi are connected in the same ways in their respective
computations, P and Q, just in case P = p1 ◦ . . . ◦ pn and Q = q1 ◦ . . . ◦ qn.

This allows us to define computational identity for unary computational
processes:

Definition 5.3. Two unary computational processes P and Q are computation-
ally identical iff P = p1 ◦ . . . ◦ pn, Q = q1 ◦ . . . ◦ qn, and 1 ≤ i ≤ n, pi and qi are I/O
equivalent.

An example of two unary computational processes that are computation-
ally identical is shown in Figure 5.13. Processes P and Q could take place in
different physical media. However, if their respective subprocesses, pi and qi,
are I/O equivalent, then processes P and Q are computationally identical. This
is how systems that do not share physical properties can perform the same
computation.

Definition 5.3 covers unary computational processes, what about general
computational processes? For general processes, it is not easy to say what
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it means for two subprocesses to be connected in the same way. Our intu-
ition about computational identity can therefore provisionally be formalised as
follows:

Definition 5.4. Two computational processes P,Q are computationally identical
iff P = p1 � . . . � pn, Q = q1 � . . . � qn, and 1 ≤ i ≤ n:

1. pi and qi are I/O equivalent.

2. pi and qi are connected in the same ways in their respective computations.

What remains to be said is what it means for two subprocesses to be connected
in the same way in their respective computations.

Let us go back to unary processes. The definition for unary processes—that
two subprocesses are connected in the same way just in case they occupy the
same positions in their respective chains—is a consequence of a more general
principle. The more general principle is that two subprocesses are connected
in the same ways just in case the inputs and outputs of each subprocess are
connected to (other) inputs and outputs in the same way as the inputs and
outputs of the respective subprocess in the other computation. Therefore, if pi

and qi are connected in the same ways then, if the uth output of pi is connected
to the vth input of p j, then the uth output of qi is connected to the vth input
of q j. The situation is simple for unary subprocesses because there are so few
ways in which unary processes can be connected. For general processes, this
original principle would apply in all its complexity.

Unlike unary computational processes, the way in which general computa-
tional processes are connected cannot be inferred from the spanning predicate. If a
unary computational process P is spanned by p1, . . . , pn, then we can infer how
p1, . . . , pn are connected: namely, in chain with p1 followed by p2, . . . , followed
by pn. However, if a general computational process P is spanned by p1, . . . , pn,
then not a great deal can be said about the way in which p1, . . . , pn are connec-
ted. As discussed in Section 4.3.2, there are a variety of ways in which p1, . . . , pn

can satisfy P = p1 � . . . � pn. How the subprocesses of a general process are
connected—which input is connected to which output, and so on—cannot be
inferred from the spanning predicate.

Since the spanning predicate does not specify the way in which the subpro-
cesses are connected, we cannot require that the subprocesses of P and Q are
connected in the same ways merely by specifying that P = p1 � . . . � pn and
Q = q1 � . . . � qn. A further condition must be added. This further condition
should capture the above general principle. This principle was that two sub-
processes are connected in the same ways just in case the inputs and outputs of
each subprocess are connected to (other) inputs and outputs in the same way as
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the inputs and outputs of the respective subprocess in the other computation.
So if an ith input is connected to a jth output in one computation, then the ith
input of the equivalent subprocess should be connected to the jth output of the
equivalent subprocess in the other computation, and vice versa. This general
principle can be formalised as follows:

Definition 5.5. pi, qi are connected in the same ways iff:

1. ∀u ∈ args(pi),

• if inu(pi) = outv(p j), then inu(qi) = outv(q j)

• if inu(pi) = inv(P), then inu(qi) = inv(Q)

• if inu(pi) = inv(p j), then inu(qi) = inv(q j).

2. ∀u ∈ vals(pi),

• if outu(pi) = inv(p j), then outu(qi) = inv(q j)

• if outu(pi) = outv(P), then outu(qi) = outv(Q)

• if outu(pi) = outv(p j), then outu(qi) = outv(q j).

3. ∀u ∈ args(qi),

• if inu(qi) = outv(q j), then inu(pi) = outv(p j)

• if inu(qi) = inv(Q), then inu(pi) = inv(P)

• if inu(qi) = inv(q j), then inu(pi) = inv(p j).

4. ∀u ∈ vals(qi),

• if outu(qi) = inv(q j), then outu(pi) = inv(p j)

• if outu(qi) = outv(Q), then outu(pi) = outv(P)

• if outu(qi) = outv(q j), then outu(pi) = outv(p j).

An example of two computational processes whose subprocesses satisfy Defin-
ition 5.5 is shown in Figure 5.14.

Definition 5.5 is structurally similar to Definition 4.15, the definition of the
general joining operator ‘�’. Definition 4.15 specified the various ways in which
inputs and outputs of two processes can be connected so as to make those two
processes join into one larger process. Definition 5.5 recycles these criteria to
say that if the inputs and outputs of a subprocess pi are connected in one of
these ways, then the inputs and outputs of the other subprocess qi are connected
in the same way, and vice versa. Clauses 1–2 of Definition 5.5 specify that qi

should have the same pattern of connections as pi. Clauses 3–4 specify that pi

should have the same pattern of connections as qi.15

15Like Definition 4.15, it is possible to make Definition 5.5 more precise by removing any reference
to inputs and outputs and writing it purely in terms of representation tokens and spatiotemporal
regions. This can be done using the method shown in Appendix B.



CHAPTER 5. APPLICATIONS 154

p3

p5

p1

p4

p2

P

q3

q5

q1

q4

q2

Q

Figure 5.14: Two general computational process whose subprocesses are con-
nected in the same way.

Definition 5.5 was last piece that we needed in order to formalise our original
intuition about computational identity. Definition 5.4 now gives a complete ac-
count of computational identity. It is not hard to show that the resulting notion
of computational identity is symmetrical, reflexive, and transitive. Hence, it is
an equivalence relation. Note that the resulting notion of computational iden-
tity does not depend either on the time delays of the respective processes, or
on the way in which their respective representations are structured.

What remains to be done is to show how this notion of computational
identity relates to our talk about systems performing computations. Consider
two physical systems. If there is at least one process in one system that is
computationally identical to a process in the other system, then the two systems
count as performing the same computation. This completes our account of what
it means for two computational processes to be the same or different, and what
it means for two systems to perform the same computation.

5.3 Pragmatics of computation talk

Like any semantic account there are counterexamples. Not every consequence
of the PR-model matches up with our intuitions about real-world computation
talk. The PR-model classifies some processes as computational that we nor-
mally do not, and it classifies some processes as performing different computa-
tions, when we normally think of them as performing the same computation.
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What should we do about such cases? I believe that all such cases can be ac-
counted for in terms of the pragmatics of computation talk. The PR-model is an
account of the truth conditions of computation talk—it is a semantic account.
The pragmatics of computation talk concerns the conditions under which state-
ments are appropriate or inappropriate to assert. A statement may be true but
inappropriate to assert in a given context, or false but appropriate to assert. A
full pragmatics of computation talk is too large a task to be undertaken here,
but some indication can be given of the kind of pragmatics that is required.

One consequence of the PR-model is that it classifies simple representational
processes as computations. If a process is simple, then according to Definition
4.13, it is computational, since it is spanned by at least one simple representa-
tional process, namely itself. But in many cases, we do not regard simples as
performing computations. How can we deal with this? One way of dealing
with this case is to modify Definition 4.13 to explicitly exclude simple processes
from qualifying as computations by, for example, requiring that a computa-
tional processes be spanned by more than one simple process. However, this
would not respect the fact that in some rare cases we do wish to think of simples
as performing computations. Therefore, such cases are perhaps better dealt
with in the pragmatics. On this view, one could say that a simple process is
a computation, but a computation of an uninteresting sort. Generally it is not
appropriate to talk of simple processes as performing computations, because,
among other things, they do not have an interesting computational structure
that we wish to discuss.

Another kind of apparently problematic case arises from Definition 3.2, the
definition of a process. According to Definition 3.2, a token, φ, which exists
unchanged for a time t counts as a process. The process can be characterised
by the triple ({(φ,φ, t)},A,B), where A and B are spatiotemporal regions that
contain the token at the start and at the end of the time interval. According to
Definition 3.2, a process takes place, even though nothing appears to happen.
How can we deal with such a case? One way is to modify Definition 3.2
to explicitly exclude this kind of system from qualifying as a process by, for
example, requiring that a process not leave all of its input tokens unchanged.
However, arguably, in some cases we do wish to talk about processes that leave
all of their input tokens unchanged. Therefore, it is again perhaps better to deal
with such cases in the pragmatics. One could say that in such instances there is
a process, but a process of an uninteresting and generally unremarkable sort.
Statements about the existence of such processes are rarely asserted because
such processes are rarely of interest.

Another potentially problematic case is that we often say that two systems
‘perform the same computation’ even though they do not satisfy Definition 5.4.
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For example, we might say that two PCs perform the same computation even
though one uses an addition subprocess that has 32-bit precision, and the other
uses an addition subprocess that has 64-bit precision. The two addition subpro-
cesses are not I/O equivalent since they diverge in their behaviour for outputs
that represent numbers greater than 232. Therefore according to Definition 5.4,
the two systems are not computationally identical. In such a case, it may make
sense to distinguish strict computational identity from looser and more prac-
tical notions. For many purposes, it does not matter if certain processes are not,
strictly speaking, computationally identical so long as the differences between
them are so small that they can be ignored. In the case above, if we are not
interested in sums larger than 232, then it might make sense to assert that the
processes are computationally identical even if, under consideration, it would
be admitted that the two processes are not, strictly speaking, computationally
identical after all.

There are many other ways in which pragmatics of computation talk inter-
acts with the truth-conditional semantics provided by the PR-model. However,
our aim in constructing the PR-model was not to give an account of every as-
pect of meaning, pragmatic and otherwise, of our computation claims. Our
aim in constructing the PR-model was to get a clear view of the truthmakers
of computation talk. It was a metaphysical, not a semantic, problem that mo-
tivated the project. Now, let us turn to these truthmakers—the facts that make
computation talk true or false.



Chapter 6

Metaphysics

We now have an account of what we mean when we say that a system performs
a computation, and what we mean when we say that two computations are
the same or different. A system S performs a particular computation just
in case certain conditions obtain. What remains to be said are the kinds of
metaphysical facts that make those conditions obtain. In particular, it remains
to be said whether those facts can be mind-independent or whether they must
be mind-dependent. If those facts can be mind-independent, then realism about
computation talk is true. However, if the facts must be mind-dependent, then
anti-realism about computation talk is true.

6.1 The terms of the PR-model

The PR-model analyses computation talk into conditions involving four basic
notions: numerical identity, counterfactual dependence, representational con-
tent, and explanatory simplicity. In the following sections, I argue that the truth-
makers of relevant claims involving these notions can be mind-independent.
Let us consider each notion in turn.

6.1.1 Identity

The metaphysical facts about identity required by the PR-model have already
been discussed in Sections 3.2.5 and 3.2.6. Briefly, the PR-model requires that,
for any two representation tokens φ and ψ, it must be determinate whether φ is
identical toψ or not, and whether JφK is identical to JψK or not. In Section 3.2.5, I
argued that if one accepts the Evans–Salmon argument, then the required facts
are determinate.

157
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Whether determinate or not, identity relations almost certainly appear to
be mind-independent. Intuitively, if an entity a is numerically identical to an
entity b then that is a matter that just concerns a and b. It does not require
the added participation of, say, an interpreting agent. Pending good reasons
otherwise, realism about identity relations seems plausible. Indeed, one could
argue that at least some identity relations must be mind-independent in order
for there to be interpreting agents at all. Consequently, it seems plausible to
suppose that the truthmakers for identity claims can be mind-independent.
(Note that if this condition is violated for certain entities, then those entities
could still participate in computations; they just could not participate in mind-
independent computations.)

6.1.2 Counterfactual dependence

One of most famous defenders of realism about counterfactual dependence is
David Lewis. Lewis (1973) gives a semantics for counterfactual conditionals
in terms of similarity relations between possible worlds. Lewis (1986b) then
argues for a realist construal of the truthmakers for these conditionals in terms
of a metaphysics of possible worlds. For Lewis, it is a brute mind-independent
fact whether one possible world is closer, or further away, from another possible
world. However, even if one were to reject Lewis’s metaphysics, there are still
reasons for a realist construal of counterfactual conditionals. These conditionals
are used to analyse claims about causation, dispositions, and supervenience. If
one wishes to be a realist about these claims, then one should also be a realist
about counterfactual conditionals.

Note that realism about counterfactual conditionals is not the only option.
Counterfactual conditionals could be given an expressivist analysis on which
such conditionals express feelings, say of expectation, but perhaps do not state
facts, and hence do not have truth values or truthmakers. Counterfactual
conditionals could also be given a quasi-realist analysis, on which they have
truth values, but their truthmakers are mind-dependent.1 Yet another option is
to analyse counterfactual conditionals as inference-tickets, which do not state
facts but license and commit their users to certain inferences and explana-
tions.2 Realism about computation requires that these alternative approaches
to counterfactual conditionals are false, or at least that they do not apply to all
counterfactual conditionals.

1See Blackburn (1993).
2See Ryle (1949).
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6.1.3 Explanation

The PR-model requires that the spanning subprocesses of a computation be
computationally simple. Therefore, if there are to be mind-independent facts
about computation, then there must be mind-independent facts about computa-
tional simplicity. Computational simplicity is defined by Definition 4.5 in terms
of our explanatory standards: a representational process is computationally
simple just in case its mechanism does not call for computational explanation.
Therefore, if there are to be mind-independent facts about computation, then
there must also be mind-independent facts about our explanatory standards.

At first sight, it looks like there is bad news in store for the realist about com-
putation since our explanatory standards appear to be clearly mind-dependent.
Our explanatory standards appear to depend on our beliefs, interests, and val-
ues: if we had different beliefs, interests, and values, then we would have dif-
ferent explanatory standards. Since according to the PR-model, claims about
our explanatory standards are essential to claims about computation, it appears
that claims about computations must also depend on our beliefs, interests, and
values. Therefore, anti-realism about computation is true.

The preceding line of argument for anti-realism may be correct. It may be
that our explanatory standards are an unavoidable source of anti-realism about
our computation talk. It is worth noting that, even if this is the case, then by
itself it is an interesting result. It was not obvious from the start that the most
inextricable source of anti-realism about computation is the mind-dependence
of our explanatory standards. (This anti-realist line of argument certainly does
not appear in Searle (1992), Putnam (1988), or Kripke (1982)). However, I wish
to suggest three ways out for a realist about computation.

Three ways out

First, a realist about computation might suggest that, contrary to appearances,
our explanatory standards are mind-independent. This could be done by mak-
ing a distinction between the explanatory standards we in fact adopt in a given
situation, and the explanatory standards we should adopt. It may be true that
the explanatory standards we in fact adopt depend on our beliefs, interests,
and attitudes. However, arguably, the explanatory standards that we should
adopt are an objective and mind-independent matter. Explanatory standards
are not, after all, a matter of subjective taste. One cannot adopt any explanatory
standards one pleases with impunity. There is a sense in which one can make
a mistake with one’s explanatory standards: one might choose a standard for
explanation that is too low to be genuinely explanatory, no matter what one’s
beliefs and wishes are otherwise. There also seems to be a sense in which a
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community of explainers’ explanatory standards can be wrong. One possible
explanation for this is that there is an objective fact of the matter about what
our explanatory standards should be, and we can get this right or wrong in the
standards that we in fact adopt. If this is correct, then the realist about com-
putation has a way out. She can identify the explanatory standards relevant to
computational simplicity with the explanatory standards that we should adopt,
and hence with mind-independent facts. The disadvantage of this approach is
that the premise on which it is based—that the norms of explanatory standards
are mind-independent—is highly arguable.

A second way out for the realist about computation is to admit that our
explanatory standards are mind-dependent, but claim that those explanatory
standards are part of the semantic rather than metaphysical component of the
analysis. Whether a system performs a particular computation depends on
two factors: (1) what we mean by ‘performs a particular computation’; and
(2) the way the world is. The first component concerns the semantics of our
computation talk. The second component concerns the metaphysical facts that
make that semantic content true or false. The semantic component can be
agreed to be mind-dependent: what we mean by our words clearly depends
on our beliefs and attitudes. What the realist about computation claims is that
once this semantic content has been settled, then it is a mind-independent matter
whether that content is true or false. Therefore, it is possible for a realist about
computation to admit that our explanatory standards are mind-dependent,
provided she identifies those standards with the first rather than the second
component of the analysis. On this view, the mind-dependence of explanatory
standards is compatible with realism about computation.

There seems to be some justification for this move. Appeal to background
knowledge and standards, including our explanatory standards, appears to be
required before the semantic content of what we mean is fixed. For example,
consider claims involving indexicals, such as ‘This process is the one that I wish
to use’. Typically, there will be numerous processes in the region to which
the speaker indicates. The way that a particular process is communicated
to an audience is in virtue of shared standards, including shared explanatory
standards. It is because, inter alia, we treat the same kinds of processes as simple,
that we agree on which process is indicated in such a situation. Therefore, it does
not seem unreasonable to include certain aspects of our explanatory standards
in an account of what we mean. On this view, explanatory standards do not
play a truthmaking role in making pre-existing semantic content true or false.
Rather, explanatory standards partially determine what that semantic content is.
The semantic content we express—that according to the realist is made true or
false by mind-independent facts—has the distinctive shape it has in virtue of
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our (mind-dependent) explanatory standards.3

The third way out for the realist is to simply drop the simplicity requirement
from the PR-model. On this view, any collection of spanning representational
subprocesses counts as a computation. Therefore, there is no need to worry
about the mind-dependence of computational simplicity, since no claims about
computational simplicity are made. However, even on this view, intuitions
about simplicity still need to be accommodated. When we say that a process is
a computation, we still mean that it is made up from processes that are in some
sense simple. How can such intuitions about simplicity be accommodated?
One solution is to deal with such intuitions in the pragmatics of computation
talk. One could say that although it is true that any spanning collection of
representational subprocesses is a computation, it is only appropriate to assert
such a claim if those subprocesses are, in the relevant context, computationally
simple. On this view, computational simplicity is a pragmatic feature of our
computation talk, rather than semantic feature of our computation talk, or a
metaphysical feature of the world.

This approach has three virtues. First, it allows the realist to drop the sim-
plicity requirement from the PR-model, but still to acknowledge an important
role that computational simplicity plays in our computation talk. Second, it
allows the pragmatics of computation talk to be addressed by the pragmatics
of explanation. Computational simplicity is defined in terms of our explanat-
ory standards. The nature of our explanatory standards is part of the subject
matter of the pragmatics of explanation. By classifying computational sim-
plicity as a specifically pragmatic problem, we neatly accommodate a topic
that already appears to be pragmatic under a pre-existing pragmatic heading.4

Third, the current approach captures the intuition, described in the second ap-
proach above, that our explanatory standards are part of what we mean. Unlike
the case above however, in this case our explanatory standards are part of the
pragmatic, rather than the truth-conditional, component of what we mean. It is
also worth mentioning that on this view the conditions for a system to perform
a computation remain non-trivial. The conditions involving representation,
spanning, and so on, are not easy to meet.

6.1.4 Representation

According to the PR-model, computation involves representation. Therefore, in
order for there to be mind-independent facts about computation, there must be

3Perry (1997), for one, argues that truth-conditional semantics should include truth conditions
that take into account wider elements, such as facts about speaker’s intentions, knowledge and,
presumably, explanatory standards.

4On the pragmatics of explanation, see Lewis (1986a) and van Fraassen (1980), Ch. 5.
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mind-independent facts about representation. More precisely: if a computation
is mind-independent, then it must be a mind-independent fact that each of its
tokens, φ, represents a particular representational content JφK. If this condition
is not met, then the performance of that computation, and the identity of that
computation, is not a mind-independent matter.

Clearly, not all representations are mind-independent. Many of the rep-
resentations with which we are familiar require agents to interpret them. For
example, the representation consisting of the ink-marks ‘dog’ represents dogs.
However, ‘dog’ represents dogs only because we, as English-speakers, interpret
it as doing so. ‘Dog’ does not represent dogs as a matter of mind-independent
fact. A representation relation between ‘dog’ and dogs only obtains because of
our beliefs and attitudes. In another linguistic community, the ink-marks ‘dog’
might represent cats, or might not represent anything at all. If there were no
humans or similar interpreting agents, then there would be no fact about what
‘dog’ represents. Representations like ‘dog’ ineliminably require interpreters
in order to have the content that they have. Let us call such mind-dependent
representations ‘conventional’.

Some philosophers argue that in addition to conventional representations,
there are also ‘natural’ representations.5 Natural representations are represent-
ations that satisfy the mind-independence criterion above. For these represent-
ations, it is a mind-independent matter that a representation token, φ, repres-
ents the content JφK. It is generally expected that if natural representations are
possible, then a reductive account of the natural representation relation can be
given. In other words, such relations are not assumed to be sui generis features
of the world.6 Current proposals suggest that natural representation relations
consist in either causal covaration relations, or in facts about our evolutionary
history.7

Whatever one thinks about current proposals about the nature of natural
representation relations, there seems to be good reasons for thinking that some
natural representations exist. Natural representations appear to be required in
order to prevent an infinite regress of conventional representations. A conven-
tional representation represents because, inter alia, we have certain beliefs and
attitudes. However, those beliefs and attitudes are themselves representations.
As representations, they can either be conventional or natural. If conventional,
then they get their content because, inter alia, we have certain other beliefs and
attitudes. This raises the question of what determines the content of those

5For example, see Dretske (1981); Fodor (1990b); Millikan (1986).
6For example, ‘It’s hard to see . . . how one can be a Realist about intentionality without being,

to some extent or other, a Reductionist . . . If intentionality is real, it must really be something else.’
(Fodor, 1987, 97).

7See Dretske (1981); Fodor (1990b) for the first suggestion, and Millikan (1986) for the second.
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beliefs and attitudes. If one says that those beliefs and attitudes are themselves
conventional representations, then that raises the question of what determines
their content, and so on. Ultimately, appeal to conventional representations can-
not settle the issue of how a conventional representation relation holds. Each
appeal to a conventional representation introduces yet more conventional rep-
resentations, setting up an infinite regress. Natural representations would cut
the regress and settle the representational content without introducing further
representations. Unless one is willing to accept an infinite regress of conven-
tional representation, natural representations must exist.8

Natural representations are the mind-independent truthmakers for the PR-
model that we have been looking for: they satisfy the above criterion of mind-
independence. Realism about computation is compatible with the existence
of both conventional and natural representations. Just as it is possible for
representation to come in two types, conventional and natural, so it is possible
for computation to come in two types, mind-dependent and mind-independent.
These two types are related in the following way. If some of the representations
that participate in a computation are conventional, then that computation is
mind-dependent. If all of the representations that participate in a computation
are natural, then that computation is mind-independent.9

It is worth emphasising that realism about computation is not committed
to the claim that all computations are mind-independent. Such a claim would
be false given the existence of conventional representations and their mani-
fest role in real-world computation. The computations performed by many
electronic computers are conventional. It is because of mind-dependent conven-
tions that 0 V represents 0, and 5 V represents 1 in electronic computers. If we
had different beliefs and attitudes, then these voltages would have different
representational content, or no representational content at all. However, the
existence of such cases of mind-dependent computation is, by itself, no threat
to realism about computation. The realist about computation claims that mind-
independent computation is possible, not that it is necessary. The anti-realist
about computation claims that mind-independent computation is impossible.

An additional worry for a realist about cognitive science is that natural
representations may not be available in cognitive science. It would be no
help to cognitive science if natural representations exist but did not participate
in cognitive processes. Fortunately, there are good reasons for thinking that
natural representations, if they exist at all, do participate in cognitive processes.

8An alternative way out of the regress, one that is not considered here, is to be a dualist who
posits mental states that are intrinsically representational.

9Similar points can be made concerning identity, counterfactual dependence, simplicity, and the
other conditions. Realism about computation does not require that all counterfactual dependence
relations be mind-independent, only that some are.



CHAPTER 6. METAPHYSICS 164

First, the regress argument given above suggests that beliefs, attitudes, and
other mental representations are the best candidates for natural representations,
since they are the most likely places at which to cut the regress. Second,
the main positive theories of natural representation aim primarily at securing
content for mental representations. Even if such theories fail to secure content
for sophisticated mental representations like beliefs and desires, they still may
be able to secure content for simple subpersonal mental representations, such as
those used in shape recognition, syntax parsing, and other processes of interest
to cognitive science.

6.1.5 Other notions

The PR-model uses a number of notions in addition to those mentioned above.
For example, the PR-model uses the notion of a spatiotemporal region. I assume
that it is possible to be a realist about spatiotemporal regions. The PR-model also
uses the notion of a structured representation. This notion does not, by itself,
pose any problem for realism about computation. We can be realists about
structured representations just in case we can be realists about the relevant
structures and composition operations. It is plausible that this condition is
met for the cases of structured representation discussed in Chapters 3 and 4,
viz. spatial concatenation, temporal concatenation, superposition of waveform,
and coinstantiation of (mind-independent) properties.

6.2 Conclusion

The PR-model provides an account of what we mean when we say: (1) that a
system performs a computation, and (2) that two computations are the same
or different. If some of these computation claims are true, then they must
have truthmakers. In this chapter, I have claimed that their truthmakers can be
mind-independent. Provided one accepts realism about identity, counterfactual
dependence, representation, and (possibly) explanation, then one can be a
realist about computation. If one is willing to buy into the realist framework
described above—which many philosophers do for independent reasons—then
one can say that it is the world, not our interpretative attitudes, that make
computation claims true or false.



Conclusion

Cognitive processes are complex and mysterious. It is not only unclear how
they work, it is unclear how they are even possible. Cognitive science aims
to answer these questions. The central claim of cognitive science is that cog-
nitive processes are computations. According to cognitive science, we have
certain cognitive processes because our brains perform distinctive computa-
tions. Processes that have been explained in this way include syntax parsing,
shape recognition, and deductive inference.

The computational strategy has both benefits and risks attached. The benefit
is that it provides a way of explaining how cognitive processes work and how
they are possible. The risk is that it makes cognitive science hostage to fortunes
of the notion of computation. If the notion of computation turns out to be
problematic, or trivial, or interest-relative, then cognitive science is in trouble.
Advocates of cognitive science should be worried, because the nature of our
notion of computation in these respects is not obvious.

There are at least two major features of the notion of computation that are
potentially problematic. First, as we saw in Chapter 1, the conditions under
which two systems perform the same computation are unclear. Second, the way
in which the physical makeup of a system relates to its computational identity
is unclear. Concerns arising from these two areas have led Searle, Putnam, and
Kripke to claim that we should be anti-realists about computation. According
to Searle, Putnam, and Kripke, the computation that a system performs is not,
and cannot be, a mind-independent feature of that system. Computation is
invariably sensitive to, and requires, an interpretative agent.

If anti-realism about computation is correct, then there are at least three
damaging consequences for cognitive science. First, an expected pay-off from
cognitive science was an explanation of mental life in non-mental terms. If
anti-realism about computation is correct, then this pay-off is undeliverable:
instead of explaining mentality, cognitive science presupposes mentality from
the start. Second, if anti-realism about computation is correct, then there are
certain mental processes that, even in principle, cognitive science cannot ex-
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plain. These mental processes are those that, according to the anti-realist, are
partially constitutive of what it is to perform a computation. Third, provided
we are not global anti-realists about science, anti-realism about computation
entails that cognitive science is not on a par with the other sciences. While
physics, chemistry, and physiology describe the world in mind-independent
terms, cognitive science does not.

In this thesis, I have argued that anti-realism about computation can be
resisted. If certain premises are accepted, then we can be realists about compu-
tation, and cognitive science can retain its claim to describe the world a mind-
independent way. Two ways in which to argue for this conclusion should be
distinguished. One way—purely negative—is to argue that there are flaws in
the anti-realists’ arguments. Unfortunately, attacking anti-realism does not, by
itself, establish realism. Even if existing anti-realist arguments are flawed, anti-
realism may still be correct for independent reasons, or realism and anti-realism
may both be false. An alternative, positive, strategy is to put forward a real-
ist account of computation as a competitor to the anti-realist accounts. If this
account can explain the phenomena of computation as well its anti-realist col-
leagues, and we are willing to accept its premises, then there is no reason why
we cannot be realists about computation. It is this second, positive, strategy for
defending cognitive science that I have pursued in this thesis.

My positive account of computation comes in two parts. The first part
concerns the semantics of our computation talk. This component of the account
gives an account of what we mean when we say: (1) that a system performs
a computation, and (2) that two computations are the same or different. The
second part concerns the metaphysics. This component gives an account of the
possible truthmakers of our claims about computation. Strictly speaking, the
semantic component is neutral between realism and anti-realism. It is possible
for an anti-realist about computation to accept the proposed semantic model. It
is the second component—the nature of the truthmakers—that decides the issue
of realism. If the truthmakers of computation talk can be mind-independent,
then realism about computation is true. If those truthmakers must be mind-
dependent, then realism about computation is false. (This is not to say that
the semantic component is trivial or insignificant. On the contrary, much of
the work of this thesis has gone into developing a semantic model that can
both accommodate intuitions about computation and the possibility of mind-
independent truthmakers.)

I have argued that realism about computation is true conditional on a num-
ber of assumptions. One can be a realist about computation provided one is
a realist about identity, counterfactual dependence, representation, and (pos-
sibly) explanation. Realism about computation is conditional on realism in
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these other areas. Fortunately, realism in these other areas has already re-
ceived extensive defence. Such realism is generally considered a live option.
Furthermore, realism in these other areas is generally motivated on grounds
independent from any concerns about computation. Therefore, realism about
computation should itself be considered a live option.

However, the argument cuts both ways. If one rejects these realist assump-
tions, then realism about computation is false. I believe that it is over this
issue—the possibility of realism about identity, counterfactual dependence,
representation, and (possibly) explanation—that the ultimate disagreement
between the realist and anti-realist about computation lies. Searle, Putnam,
and Kripke claim that we cannot be realists about computation. They also
claim that we cannot be realists about at least one of the components above.
Searle (1992) argues that mind-independent representation is impossible. Put-
nam (1981, 1988) argues that mind-independent representation is impossible.
Kripke (1982), in his guise as a meaning sceptic, argues that mind-independent
representation is impossible. None of these anti-realists accept the possibility
of mind-independent representation, and none accept the possibility of mind-
independent computation.

It is possible to disagree with Searle, Putnam, and Kripke over the details
of their arguments. Arguably, they should have used a different model of
computation talk, perhaps one more like the PR-model. However, I do not think
that this is where the main problem in their argument lies. This is because even
if they had accepted the PR-model, they would still have rejected the possibility
of realism about computation. It is a disagreement about the nature of the
notions mentioned above, especially representation, that is the main point of
disagreement between realists and anti-realists about computation. In short,
the arguments of Searle, Putnam, and Kripke are not flawed essentially because
of an internal inconsistency, or lack of attention to the details of computation
talk—although as they currently stand they may also be flawed in these respects.
The essential problem in their arguments lies in their premises. In particular,
in their premise that mind-independent representation is impossible. Searle,
Putnam, and Kripke have independent reasons for claiming that this premise
is true. However, this should not tempt philosophers unsympathetic to those
reasons to be anti-realists about computation. Unless one wishes to buy into
their wider anti-realist framework, there is no reason why one should also be
an anti-realist about computation.

This response to anti-realism about computation should be distinguished
from those of Chalmers (1996) and Copeland (1996). Chalmers and Copeland
argue that the flaw in the arguments of Searle, Putnam, and Kripke is not
that they have distinctively anti-realist premises, but that they do not have a
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sufficiently sophisticated model of our computation talk. Chalmers proposes
a model based on combinatorial state automata. Copeland proposes a model
based on formal specification and honest models. I have argued that neither
of these models, by themselves, can secure realism about computation. Even if
Searle, Putnam, and Kripke were to accept these models, they would still not
accept realism about computation. The semantic account of computation talk
is important, but realism about computation can only be secured by accepting
appropriate realist premises.

The PR-model, like the models of Chalmers and Copeland, cannot by it-
self defeat anti-realist arguments. What then does it do? First, the PR-model
provides a rationale for why certain realist assumptions are important. It is not
obvious why it is important to be a realist about X, Y, Z, unless one has estab-
lished that what we mean when we say that a system performs a computation
is that X, Y, Z obtain. Second, unlike the models of Chalmers and Copeland,
the PR-model provides an account of what it means for two computations to be
the same or different. The PR-model shows how claims about computational
identity can have distinctive truthmakers, just as it shows how claims about
the performance of computations can have distinctive truthmakers. Third, as
discussed above, the PR-model plays a crucial role in the overall strategy of this
thesis. That strategy is, instead of directly challenging anti-realist accounts, to
provide a credible realist alternative. The PR-model specifies the details of that
alternative.

We can get some idea of the final shape of the account by answering a few
questions. Can two systems perform the same computation ? Yes—two systems
can perform the same computation even if they do not share the same physical
properties. All that needs to be shared is a pattern of counterfactual dependency
relations between representations that have the same content. Can the same
system perform more than one computation? Yes—this can happen in a number
of ways. The tokens of the system may represent more than one thing, or, there
may be more than one sequence of spanning representational subprocesses
contained inside that system. Do all systems perform all computations? No—
the requirements on performing a computation are non-trivial. For one thing, a
system must contain representations in order to perform a computation. Brick
walls do not perform computations because, among other things, they do not
contain representations. Are the requirements on performing a computation too
strict to be met by any system? No—as we saw in Chapter 5, the requirements
are satisfied by many real-world systems, including many of those that we
intuitively classify as paradigmatic cases of computation.

In Chapter 1, I argued that the man inside the Chinese room need not be
able to run an algorithm putatively constitutive of mentality. At that point,
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I did not have a positive account of computational identity. I argued for the
conclusion using general intuitions about computation. Now that I have such
an account, does the same conclusion still hold? First, can the man inside the
room perform any computation? No—the conditions under which a compu-
tation is performed are too diverse for one system to be capable of performing
all computations. Second, can the man inside the room perform at least one
computation constitutive of human understanding, such as the computation
that runs on Chinese speakers’ brains? Perhaps—as discussed in Section 1.3.10,
although the man and a Chinese brain are unlikely to be able to perform the
same low-level computation, they may be capable of performing the same com-
putation at a higher level of abstraction. However, this still leaves Searle in a
weak position. First, he has to show that at the higher level of abstraction, the
two systems do perform the same computation. Second, he has to show that at
the higher level of abstraction the features of the algorithm that are meant to be
constitutive of understanding are preserved. It is not clear how he could show
either of these things. The burden of proof rests firmly on him.



Appendix A

Representational
subprocesses

In this section, I argue that any plausible notion of I/O equivalence requires that
the processes involved be representation-preserving. A process is presentation-
preserving just in case it satisfies condition (2) of Definition 4.1, the definition of
a representation process. This condition states that the mapping performed by a
representational process preserves relations between representational content:
∀φ,φ′ ∈ Φ, if φ `P ψ and φ′ `P ψ′ and Jφ′KI = JφKI, then Jψ′KI = JψKI.

Result A.1. Any plausible notion of I/O equivalence requires that the processes
involved be representation-preserving.

Suppose that Result A.1 is false, i.e. that I/O equivalence applies to processes
that are not representation-preserving. Let us consider what such a notion of I/O
equivalence could be. A process that is not representation-preserving cannot be
I/O equivalent to any process that is representation-preserving. Therefore, let us
consider only the conditions under which two non-representation-preserving
processes would be I/O equivalent.

Suppose that processes R and S are not representation-preserving. There-
fore, for process R, input tokens φ1, . . . , φn represent α and map to output
tokens ψ1, . . . , ψn that represent β, while input tokens φn+1, . . . , φn+m, which
also represent α, map to output tokens ψn+1, . . . , ψn+m that represent something
different, γ. For process S, input tokens ρ1, . . . , ρu represent α and map to out-
put tokens σ1, . . . , σu that represent β, while input tokens ρu+1, . . . , ρu+v, which
also represent α, map to output tokens σu+1, . . . , σu+v that represent γ. Under
what conditions are R and S I/O equivalent?

Three suggestions come to mind.
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The first suggestion is that R and S are I/O equivalent just in case the
respective numbers of β and γ-tokens are equal (i.e. u = n, v = m). This
suggestion is clearly hopeless. The two processes R and S may operate in
different physical media. It may be that process R takes place in silicon, while
process S involves tin-cans and string. There is no reason why the respective
numbers of tokens should be equal. Such a condition makes I/O equivalence
too hard to achieve.

The second suggestion is that R and S are I/O equivalent just in case the
proportion of β-producing to γ-producing α-input tokens is the same for both
processes (i.e. n/m = u/v). This suggestion does not work either. Suppose that
n/m = u/v and the worlds in which φ1, . . . , φn occur are close to actuality, while
the worlds in which φn+1, . . . , φn+m occur are extremely distant (outlandish
possibilities). Suppose that the worlds in which ρu+1, . . . , ρu+v occur are close
to actuality, while the worlds in which ρ1, . . . , ρu occur are extremely distant.
Call an ‘α-world’ a world in which a representation of α occurs. For R, the
closest α-world is always a β-world, while for S, the closest α-world is always
a γ-world. Therefore, processes R and S violate the following intuition: they
do not map the same representational content to the same representational
content. This is our most basic intuition about I/O equivalence. Hence, even if
their proportions match, R and S need not be I/O equivalent.

The third suggestion is that R and S are I/O equivalent just in case some
pairs of tokens have the same representational content (i.e. n,m,u, v ≥ 1). This
suggestion fails too. Pick any two representational processes, P and Q, that
are not I/O equivalent. Suppose that P accepts tokens φ1, . . . , φn representing
α as input, and yields tokens ψ1, . . . , ψn representing β as output. Suppose
that Q accepts tokens ρ2, . . . , ρ1+v representing α as input, and yields tokens
σ2, . . . , σ1+v representing γ as output. P and Q are clearly not I/O equivalent.
However, they can be made I/O equivalent by the simple expedient of adding
impurities: a single γ-producing α-token to P, and a single β-producing α-token
to Q. The resulting processes are not representation-preserving, but they satisfy
the condition above for I/O equivalence. This is absurd. I/O equivalent cannot
be this easy to achieve. If it were this easy to make systems I/O equivalent, then
there would be no need for the computer industry to work so hard to create I/O
equivalent systems.

These suggestions could be elaborated, but the prospects for such notions
are doubtful. There seems little reason to think that conditions involving num-
bers or proportions of tokens have a bearing on I/O equivalence. We should
conclude that the notion of I/O equivalence does not apply to processes that
are not representation-preserving. Our intuitions about I/O equivalence do not
apply to non-representation-preserving processes. Any plausible notion of I/O
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equivalence requires that the processes involved be representation-preserving.



Appendix B

The joining operator

In this section, I show how to formalise Definition 4.15, the definition of the
joining operator for general processes. In Section 4.3.2, the joining operator
was defined informally. I shall now show that the informal definition can be
rewritten in terms of expressions that only involve the basic terms of the PR-
model: tokens, spatiotemporal regions, and counterfactual dependence. We
shall see that, just as for unary processes, the basic terms of the PR-model are
sufficient to define spanning for general processes.

The informal nature of Definition 4.15 arise from three sources. First, ‘in’ and
‘out’ functions are used to talk about inputs and the outputs, and talk of inputs
and outputs is not basic in the PR-model. Second, the predicate ‘unattached’ is
applied to inputs and outputs without an explanation of its meaning. Third, the
time delays of the overall process are said to equal those of two subprocesses
combined, but no account is given of what this condition means. In this section,
these informal elements are replaced by conditions that only involve the basic
terms of the PR-model.

First, to recap, the definition of the general joining operator was:

Definition 4.15. P = Q � R iff P, Q, R are processes and:

1. ∀i ∈ vals(Q) either:

• ∃ j ∈ args(R) such that outi(Q) = in j(R), or

• ∃ j ∈ vals(P) such that outi(Q) = out j(P), or

• ∃ j ∈ args(Q) such that outi(Q) = in j(Q).

2. ∀i ∈ vals(R) either:

• ∃ j ∈ args(Q) such that outi(R) = in j(Q), or

• ∃ j ∈ vals(P) such that outi(R) = out j(P), or
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• ∃ j ∈ args(R) such that outi(R) = in j(R).

3. Every unattached input of Q,R is an input of P and every input of P is an
input of either Q or R. Every unattached output of Q,R is an output of P,
and every output of P is an output of either Q or R.

4. The time delays of P equal those of Q and R combined.

Now I shall show how to formalise this definition.

B.1 In and out functions

In and out functions provide a convenient shorthand for talking about the
relationships between inputs and outputs, but there are a number of important
aspects of that talk that need more careful treatment.

Relations between input and output

First, in Section 4.3.2 connections between inputs and outputs were specified
by placing an identity symbol ‘=’ between in and out functions. For example,
the statement outi(Q) = in j(R) was said to mean that the ith output of Q is
the jth input of R; the statement ini(Q) = in j(R) was said to mean that the ith
input of Q is the jth input of R; and the statement outi(Q) = out j(R) was said to
mean that the ith output of Q is the jth output of R. However, characterising
the connections between inputs and outputs in this way is slightly misleading.
The actual relationship between connected inputs and outputs is not that of
identity. Instead, it is a relationship that I shall call ‘containment’.

Generally, is more accurate to say that the output of a process Q feeds into the
input of a process R, or that it is contained by the input of R, rather than saying
that the output of Q is the input of R. Typically, a connection relationship is
not symmetrical. Two outputs can be connected to a single input, but it need
not be that the input is identical to the two outputs. An output can feed into
an input, but if that input region is spatiotemporally large, it may be that the
input can receive tokens from other sources separate from the output: although
the output can feed into the input, it need not be that the input feeds into the
output. Of course, in certain circumstances the relationship between input
and output can be symmetrical. However, such symmetry is not a necessary
condition. Generally speaking, if an output is contained within an input, then
that input need not be contained within the output. In what follows, I shall
mark this relationship between inputs and outputs with the symbol ‘⊂’.

The first two conditions of Definition 4.15 can be rewritten with this contain-
ment relation in mind. This allows for a more accurate characterisation of the
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possible relationships between inputs and outputs. Condition (1) of Definition
4.15 should be rewritten as:

• ∃ j ∈ args(R) such that outi(Q) ⊂ in j(R), or

• ∃ j ∈ vals(P) such that outi(Q) ⊂ out j(P), or

• ∃ j ∈ args(Q) such that outi(Q) ⊂ in j(Q).

Condition (2) of Definition 4.15 should be rewritten as:

• ∃ j ∈ args(Q) such that outi(R) ⊂ in j(Q), or

• ∃ j ∈ vals(P) such that outi(R) ⊂ out j(P), or

• ∃ j ∈ args(R) such that outi(R) ⊂ in j(R).

Reduction to basic terms

Talk of inputs and outputs is not basic in the PR-model. Therefore, one should
show how the statements above, e.g. outi(Q) ⊂ in j(R), can be reduced to state-
ments involving only tokens, spatiotemporal regions, and counterfactual de-
pendence. This can be done along lines similar to the treatment of unary
processes.

First, a few preliminary definitions:

Definition B.1. If P (Ω,A,B) is a process:

• domaini(P) = {φi : ((φ1, . . . , φi, . . . , φn), (ψ1, . . . , ψm), (t1, . . . , tm)) ∈ Ω}

• rangei(P) = {ψi : ((φ1, . . . , φn), (ψ1, . . . , ψi, . . . , ψm), (t1, . . . , tm)) ∈ Ω}

• Ai(P) = Ai ∈ (A1, . . . ,An)

• Bi(P) = Bi ∈ (B1, . . . ,Bm)

Containment relations between inputs and outputs can be defined as follows:

Definition B.2. If Q,R are processes:

• outi(Q) ⊂ in j(R) iff rangei(Q) ⊂ domain j(R) and Bi(Q) ⊂ A j(R)

• outi(Q) ⊂ out j(R) iff rangei(Q) ⊂ range j(R) and Bi(Q) ⊂ B j(R)

• outi(Q) ⊂ in j(Q) iff rangei(Q) ⊂ domain j(Q) and Bi(Q) ⊂ A j(Q)

• ini(Q) ⊂ in j(R) iff domaini(Q) ⊂ domain j(R) and Ai(Q) ⊂ A j(R)

This completes the treatment of talk of inputs and outputs.
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B.2 Unattached inputs and outputs

Condition (3) of Definition 4.15 states that every unattached input of Q,R is
an input of P, and that every unattached output of Q,R is an output of P. No
account was given of what it means for an input or output to be ‘unattached’.
This condition can be defined in the following way:

Definition B.3. The ith input of Q is unattached iff

1. @ j ∈ vals(R) such that out j(R) ⊂ ini(Q), and

2. @ j ∈ vals(Q) such that out j(Q) ⊂ ini(Q).

Definition B.4. The ith input of R is unattached iff

1. @ j ∈ vals(Q) such that out j(Q) ⊂ ini(R), and

2. @ j ∈ vals(R) such that out j(Q) ⊂ ini(R).

Definition B.5. Every unattached input of Q,R is an input of P iff:

1. ∀i ∈ args(Q), if the ith input of Q is unattached then ∃ j ∈ args(P) such that
ini(Q) ⊂ in j(P).

2. ∀i ∈ args(R), if the ith input of R is unattached then ∃ j ∈ args(P) such that
ini(R) ⊂ in j(P).

It is straightforward to construct the condition for unattached outputs.

B.3 Time delays

Condition (4) of Definition 4.15 states that the time delays of the overall process,
P, equal those of its two subprocesses, Q and R, combined. This condition
can be formalised in the following way. First, three conventions need to be
introduced. (If different conventions are introduced, then a slightly different
notion of computation is obtained). The conventions are as follows. First,
the time delay associated with the ith output of a process is the interval from
the arrival of the last of that process’s inputs to the yielding of its ith output.
Second, if the ith input to a process receives two different tokens φ1, φ2 (maybe
because two different outputs feed into its input region), then the token that
arrives first is the token that counts as the input to that process. Third, if the
ith output region of a process yields two different output tokens ψ1, ψ2 (maybe
because it is a region shared between two different outputs), then the token
that occurs first is the output of that process. An example in which all three
conventions come into play is shown in Figure B.1.
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Figure B.1: An example of joining for general processes. The time delays of the
component processes, Q, R, are marked.

Suppose that inputs φ1, . . . , φn are presented to P. By Definition 4.11, P
will yield ψ1, . . . , ψm as output after respective times t1, . . . , tm. Let us define
delayi(P, φP) as the time delay associated with the ith output of P whenφ1, . . . , φn

are presented as input to P. The expressionφP is an abbreviation of the condition
that the tokensφ1, . . . , φn are presented as input to P. In this case, delayi(P, φP) =
ti. If φ1, . . . , φn are presented as input to P, then some non-empty subset of
those tokens will ipso facto be presented as input to subprocess Q because of
the necessary connections between P and Q stipulated by (1) of Definition 4.15.
Suppose that Q receives tokens , , φ j, , as input. Process Q will therefore
yield a sequence , , θi, , of tokens as output after respective time delays,
, , t′i , , . Define the time delay of the ith output of Q when φ1, . . . , φn are

presented to P as delayi(Q, φP). In this case, delayi(Q, φP) = t′i . If φ1, . . . , φn

are presented as input to P, then some set of tokens (perhaps intermediate
tokens, perhaps the original input tokens to P) will ipso facto be presented to
as input to subprocess R. Suppose that R receives the tokens , , θ j, ,

as input. Process R will therefore yield a sequence , , ψi, , of tokens as
output after respective time delays, , , t′′i , , . Define the time delay of the
ith output of R when φ1, . . . , φn are presented to P as delayi(R, φP). In this case,
delayi(R, φP) = t′′i .

It is convenient to be able to quantify over the connections between the
processes. This can be made easier by introducing three matrices, Q, R, and
I. These matrices represent the connections between processes P, Q, and R by
the placement of 0’s and 1’s in their appropriate rows and columns. Matrix Q
characterises the connections between the outputs of process Q and the outputs
of process P. Matrix R characterises the connections between the outputs of
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process R and the outputs of process P. Matrix I characterises the connections
between the outputs of Q and the inputs of R.

Definition B.6. For processes, P,Q,R, let us define Q, R, and I, such that:

Qi j =

 1 if out j(Q) ⊂ outi(P)
0 otherwise.

Ri j =

 1 if out j(R) ⊂ outi(P)
0 otherwise.

Ii j =

 1 if out j(Q) ⊂ ini(R)
0 otherwise.

As an example, the processes in Figure B.1 would have the following matrices:

R =


0 0 0
1 1 0
0 1 0

 Q =


1 0 0 0
0 0 0 0
0 0 0 0

 I =


0 1 1 0
0 0 0 0
0 0 0 1


We can now formalise Condition (4) of Definition 4.15. Condition (4) states

that the time delays of the overall process, P, equal those of its two subprocesses,
Q and R, combined. This can be formalised as follows:

Definition B.7. The time delays of P (Ω,A,B) equal those of Q and R combined
just in case ∀φ1, . . . , φn ∈ Ω, and ∀i ∈ vals(P):

delayi(P) = min(min
j

(Qi j delay j(Q, φP)),min
j

(Ri j combined j(R, φP))).

where min(x, y) is the smallest non-zero value of x, y, otherwise 0.

In order to see why the condition has this form, consider the various ways in
which the ith output of process P could be produced. The ith output of P could
either be an output of Q or an output of R. Suppose that it is an output of Q.
It is possible that more than one output of Q contributes to this overall output.
If more than one output of Q contributes, then the output of Q that occurs
first will be the one that counts as the output of P. Therefore, the first term of
Definition B.7 takes the minimum of the time delays of the outputs of Q that are
connected to the ith output of P. Suppose instead that the ith output of P is an
output of R. It is possible that more than one output of R contributes to this
output of P. Therefore, a minimum of the time delays is also taken. However,
unlike the previous case, some of the inputs to R may be processed by Q before
being presented to R. Therefore, even if the ith output of P is an output of R,
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the time delay associated with that output of P cannot simply be equated with
the time delay of R. The time delay for the ith output of P is a function of the
time delays of Q and the time delays of R. This function, combined j(R, φP), is
defined below. Finally, it is possible that the ith output of P is an output of
both Q and R. The output that occurs first is, as before, the output that counts
as the overall output of P. Therefore, an additional minimisation operation is
required, namely, the outer minimisation operation.

The function combined j(R, φP) measures the time delay from the presenta-
tion of φ1, . . . , φn to P to the yielding of the jth output of R. This function is
defined as follows:

Definition B.8. combined j(R, φP) = max
k

(min
l

(Ikl delayl(Q, φP)))+delay j(R, φP).

In order to see why the condition has this form, consider that process R
cannot yield its jth output until all of its inputs are present. The inputs to R can
come from either P or Q. The inputs from P have no associated time delay, since
we are measuring time delays from the presentation of input to P. However,
there are time delays associated with inputs from Q. If the kth input to R is
an output of process Q, then the time delay for the arrival of that input is the
minimum of the time delays of all the outputs of Q connected to that input of
R. The first term of Definition B.8 takes the maximum of these k-values because
all of the inputs to R need to be present before its own time delays can start to
be measured. The additional time delay that process R then adds is given by
delay j(R, φP). Therefore, the total time delay of the jth output of R—the delay
from the presentation of φ1, . . . , φn to P to the yielding of the jth output of R—is
the time to required to produce the input of R plus the time required to produce
the jth output of R. This is the value given by the function above. Note that if
Q and R are in parallel, then the first term of combined j(R, φP) is zero, and the
time delay of the jth output of R equals that associated with the jth output of
R considered in isolation.

This completes the definition of the joining operator for general processes.



Bibliography

Achinstein, P. (1983). The Nature of Explanation. Oxford University Press, Oxford.

Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences,
10:25–61.

Armstrong, D. M. (1997). A World of States of Affairs. Cambridge University
Press, Cambridge.

Armstrong, D. M. (2004). Truth and Truthmakers. Cambridge University Press,
Cambridge.

Backus, J. (1978). Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Communications of the ACM,
21:613–641.

Barrett, H. C. (2005). Enzymatic computation and cognitive modularity. Mind
and Language, 20:259–287.

Bechtel, W. and Abrahamsen, A. (1991). Connectionism and the Mind: An Intro-
duction to Parallel Processing in Networks. Oxford University Press, Oxford.

Belnap, N. D. (1996). Agents in branching time. In Copeland, B. J., editor,
Logic and Reality: Essays on the Legacy of Arthur Prior, pages 239–271. Oxford
University Press, Oxford.

Blackburn, S. (1993). Hume and thick connexions. In Essays in Quasi-Realism,
pages 94–107. Oxford University Press, Oxford.

Block, N. (1980). What intuitions about homunculi don’t show. Behavioral and
Brain Sciences, 3:425–426.

Block, N. (1981). Psychologism and behaviorism. Philosophical Review, 90:5–43.

Block, N. (1986). Advertisement for a semantics for psychology. Midwest Studies
in Philosophy, 10:615–678.

Block, N. (1995). The mind as the software of the brain. In Smith, E. E. and
Osherson, D. N., editors, An Invitation to Cognitive Science, Vol. 3, Thinking,
pages 377–425. MIT Press, Cambridge, MA.

Boden, M. A. (1988). Computer Models of the Mind. Cambridge University Press,
Cambridge.

180



BIBLIOGRAPHY 181

Boden, M. A. (1989). Escaping from the Chinese room. In Artificial Intelligence
in Psychology, pages 82–100. MIT Press, Cambridge, MA.

Boolos, G., Burgess, J. P., and Jeffrey, R. C. (2002). Computability and Logic.
Cambridge University Press, Cambridge, 4th edition.

Brody, B. A. (1980). Identity and Essence. Princeton University Press, Princeton,
NJ.

Burge, T. (1986). Individualism and psychology. Philosophical Review, 95:3–45.

Chalmers, D. J. (1996). Does a rock implement every finite-state automaton.
Synthese, 108:309–333.

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague.

Chomsky, N. (1959). Review of Verbal Behavior by B. F. Skinner. Language,
35:26–58.

Chomsky, N. (1980). Rules and Representations. Cambridge University Press,
Cambridge.

Chomsky, N. (1995). The Minimalist Program. MIT Press, Cambridge, MA.

Churchland, P. M. (1981). Eliminative materialism and the propositional atti-
tudes. Journal of Philosophy, 78:67–90.

Churchland, P. S. (1986). Neurophilosophy. MIT Press, Cambridge, MA.

Clark, A. (1997). Being There. MIT Press, Cambridge.

Clark, A. and Chalmers, D. J. (1998). The extended mind. Analysis, 58:7–19.

Copeland, B. J. (1993). The curious case of the Chinese gym. Synthese, 95:173–
186.

Copeland, B. J. (1996). What is computation? Synthese, 108:335–359.

Copeland, B. J. (1998). Turing’s O-machines, Searle, Penrose and the brain.
Analysis, 58:128–138.

Copeland, B. J. (2002). The Chinese room from a logical point of view. In Preston,
J. and Bishop, M., editors, Views Into The Chinese Room, pages 109–122. Oxford
University Press, Oxford.

Cotogno, P. (2003). Hypercomputation and the physical Church–Turing thesis.
British Journal for the Philosophy of Science, 54:181–223.

Cummins, R. (1983). The Nature of Psychological Explanation. MIT Press, Cam-
bridge, MA.

Cummins, R. (1989). Meaning and Mental Representation. MIT Press, Cambridge,
MA.

Cummins, R. and Cummins, D. D. (2000). Minds, Brains, and Computers. Black-
well, Oxford.



BIBLIOGRAPHY 182

Davidson, D. (1984). Inquiries into Truth and Interpretation. Oxford University
Press, Oxford.

Dennett, D. C. (1971). Intentional systems. Journal of Philosophy, 68:87–106.

Dennett, D. C. (1978a). Brainstorms. MIT Press, Cambridge, MA.

Dennett, D. C. (1978b). A cure for the common code. In Brainstorms, pages
90–108. Bradford Books, Montgomery, VT.

Dennett, D. C. (1980). The milk of human intentionality. Behavioral and Brain
Sciences, 3:428–430.

Diller, A. (1994). Z: An Introduction to Formal Methods. Wiley, New York, 2nd
edition.

Dretske, F. I. (1981). Knowledge and the Flow of Information. MIT Press, Cambridge,
MA.

Dreyfus, H. L. (1992). What Computers Still Can’t Do. MIT Press, Cambridge,
MA.

Evans, M. G. J. (1978). Can there be vague objects? Analysis, 38:208.

Fodor, J. A. (1975). The Language of Thought. The Harvester Press, Sussex.

Fodor, J. A. (1980a). Methodological solipsism considered as a research strategy
in cognitive psychology. Behavioral and Brain Sciences, 3:63–109.

Fodor, J. A. (1980b). Searle on what only brains can do. Behavioral and Brain
Sciences, 3:431–432.

Fodor, J. A. (1983). The Modularity of Mind. MIT Press.

Fodor, J. A. (1987). Psychosemantics. MIT Press, Cambridge, MA.

Fodor, J. A. (1990a). A Theory of Content and Other Essays. MIT Press, Cambridge,
MA.

Fodor, J. A. (1990b). A theory of content, II. In A Theory of Content and Other
Essays. MIT Press, Cambridge, MA.

Fodor, J. A. (1994). The Elm and the Expert. MIT Press, Cambridge, MA.

Fodor, J. A. (2000). The Mind Doesn’t Work That Way. MIT Press, Cambridge,
MA.

Fodor, J. A., Bever, T. G., and Garrett, M. F. (1974). The Psychology of Language.
McGraw-Hill, New York.

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connectionism and cognitive architec-
ture. Cognition, 28:3–71.

Fox, J. F. (1987). Truthmaker. Australasian Journal of Philosophy, 65:188–207.

Geach, P. T. (1980). Reference and Generality. Cornell University Press, Ithaca,
NY, 3rd edition.



BIBLIOGRAPHY 183

Gibson, J. J. (1979). An Ecological Approach to Visual Perception. Houghton Mifflin,
Boston, MA.

Harman, G. (1973). Thought. Princeton University Press, Princeton.

Haugeland, J. (1978). The nature and plausibility of cognitivism. Behavioral and
Brain Sciences, 2:215–260.

Haugeland, J. (1981). Semantic engines: An introduction to mind design. In
Haugeland, J., editor, Mind Design, pages 1–34. MIT Press, Cambridge, MA.

Haugeland, J. (1990). The intentionality all-stars. Philosophical Perspectives,
4:383–427.

Hayes, J. P. (1993). Introduction to Digital Logic Design. Addison-Wesley, Reading,
MA.

Hempel, C. G. (1965). Aspects of Scientific Explanation. Free Press, New York.

Hennessy, J. L. and Patterson, D. A. (1998). Computer Organization and Design.
Morgan Kauffman, San Francisco, CA, 2nd edition.

Hinton, G. E. and Sejnowski, T. J. (1986). Learning and relearning in Boltzmann
machines. In Rumelhart, D. E., McClelland, J., and the PDP Research Group,
editors, Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, volume 1, pages 282–317. MIT Press, Cambridge, MA.

Hofstadter, D. R. and Dennett, D. C. (1981). Reflections on Searle’s Minds, Brains,
and Programs. In The Mind’s I, pages 373–382. Harvester Press, Brighton.

Hogarth, M. L. (1994). Non-Turing computers and non-Turing computability.
In Hull, D., Forbes, M., and Burian, R. M., editors, PSA 1994, volume 1, pages
126–138. Philosophy of Science Association, East Lansing, MI.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of National Academy of Sciences,
74:2554–2558.

Horowitz, P. and Hill, W. (1989). The Art of Electronics. Cambridge University
Press, Cambridge, 2nd edition.

Houk, J. C., Buckingham, J. T., and Barto, A. G. (1996). Models of the cerebellum
and motor learning. Behavioral and Brain Sciences, 19:368–383.

Hutchins, E. (1995). Cognition in the Wild. MIT Press, Cambridge, MA.

Ito, M. (1984). The Cerebellum and Neural Control. Raven Press, New York.

Jackendoff, R. S. (1987). Consciousness and the Computational Mind. MIT Press,
Boston, MA.

Johnson-Laird, P. N. (1983). Mental Models. Cambridge University Press, Cam-
bridge.

Johnson-Laird, P. N. (1988). The Computer and the Mind. Harvard University
Press, Boston, MA.



BIBLIOGRAPHY 184

Katz, R. H. (1994). Contemporary Logic Design. Benjamin/Cummings, Redwood
City, CA.

Kripke, S. A. (1982). Wittgenstein on Rules and Private Language. MIT Press,
Cambridge, MA.

Lachman, R., Lachman, J. L., and Butterfield, E. C. (1979). Cognitive Psychology
and Information Processing. Lawrence Erlbaum Associates, Hillsdale, NJ.

Lawlor, D. W. (2001). Photosynthesis: Molecular, Physiological and Environmental
Processes. BIOS Scientific Publishers, Oxford.

Lewis, D. K. (1970a). Causation. Journal of Philosophy, 70:556–567.

Lewis, D. K. (1970b). General semantics. Synthese, 22:18–67.

Lewis, D. K. (1973). Counterfactuals. Blackwell, Oxford.

Lewis, D. K. (1979). Counterfactual dependence and time’s arrow. Noûs, 13:455–
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