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What is the relationship between information and representation? Dating back at least

to Dretske (1981), an in�uential answer has been that information is a rung on a ladder

that gets one to representation. Representation is information, or representation is

information plus some other ingredient. In this paper, I argue that this approach over-

simpliûes the relationship between information and representation. If one takes current

probabilisticmodels of cognition seriously, information is connected to representation

in a new way. It enters as a property of the represented content as well as a property of

the vehicles that carry that content. his oòers a new, conceptually and logically distinct

way in which information and representation are intertwined in cognition.

1 Introduction

here is a new way in which cognition could be information processing. Philosoph-

ers have traditionally tended to understand cognition’s relationship to Shannon

information in just one way. his suited an approach that treated cognition as an

inference over representations of single outcomes (there is a face here, there is a
line there, there is a house here). Recent work conceives of cognition diòerently.

Cognition does not involve an inference over representations of single outcomes

but an inference over probabilistic representations – representations whose content

includes multiple outcomes along with their estimated probabilities.

My claim in this paper is that recent probabilistic models of cognition open up

new conceptual and empirical territory for saying that cognition is information
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processing. Empirical work is already exploring this territory and researchers are

drawing tentative connections between the two kinds of Shannon information in the

brain. In this paper,my goal is not to propose a speciûc relationship between these

two quantities of information, although some possible connections are sketched in

Section 6. My goal is to convince you that there are two conceptually and logically

distinct kinds of Shannon information whose relationship should be studied.

Before we proceed, some assumptions. My focus in this paper is only on Shannon

information and its mathematical cognates. I do not consider other ways in which

the brain could be said to process information.¹ Second, I assume a representation-

alist theory of cognition. I take this to mean that cognitive scientists ûnd it useful
to describe at least some aspects of cognition as involving representations. I focus

on the role of Shannon information within two diòerent kinds of representational-

ist model: ‘categorical’ models and ‘probabilistic’ models. My claim is that if one
accepts a probabilisticmodel of cognition, then there are two ways in which cogni-

tion involves Shannon information. I do not attempt to defend representationalist

theories of cognition in general.²

Here is a preview ofmy argument. Under probabilisticmodels of cognition there

are two kinds of probability distribution associated with cognition. First, there is

the ‘traditional’ kind: probability distributions associated with a speciûc neural state

occurring in conjunction with an environmental state (for example, the probability

of a speciûc neural state occurring when a subject is presented with a line at 45

degrees in a certain portion of her visual ûeld). Second, there is the new kind,

characteristic of probabilistic neural representation: probability distributions that

are represented by neural states. hese probability distributions are the brain’s

guesses about the possible environmental outcomes (say, that the line is at 0, 35, 45,

or 90 degrees).³ he two kinds of probability distribution – one associated with a
neural/environmental state occurring and the other associatedwith the neural system’s
estimate of a certain environmental state occurring – are conceptually and logically

distinct. hey have diòerent outcomes, diòerent probability values, and diòerent

types of probability (objective and subjective) associated with them. hey generate

two separatemeasures of Shannon information in the brain. he algorithms that

¹See Floridi (2011).

²Note that I deûne representationalist theories in terms of their utility for describing cognitive
processes, not in terms of their truth. Some deny truth but accept utility: they endorse some form of

instrumentalism about representationalist models in cognitive science (for example, Colombo and

Seriès, 2012; Egan, 2010; Sprevak, 2013). On my view, this still falls within the representationalist

paradigm. To the extent that it is legitimate, even if only on pragmatic grounds, to use a representa-

tionalist model of cognition, it is legitimate to say that cognition involves two kinds of information

processing.

³his distinction is not that between ‘encoding’ and ‘decoding’ probability distributions (Elia-

smith, 2005a). Encoding and decoding distributions are discussed in Section 3.
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underlie cognition can be described as processing either or both of these Shannon

quantities.

2 Shannon information

Before attributing two kinds of Shannon information to the brain, we ûrst need

to know what justiûes attributing any kind of Shannon information. Below, I

brie�y review the deûnitions of Shannon information in order to identify suõcient

conditions for a physical system to be ascribed Shannon information. he rest of

the paper shows that these conditions are satisûed in two separate ways. Deûnitions

in this section are taken from MacKay (2003), although similar points can bemade

with other formalisms.

In order to deûne Shannon information, one ûrst needs to deûne the notion of a

probabilistic ensemble:

• Probabilistic ensemble X is a triple (x ,AX , PX), where the outcome x is the

value of a random variable, which takes on one of a set of possible values,

AX = {a1, a2, . . . , ai , . . . , aI}, having probabilities PX = {p1, p2, . . . , pI}, with

P(x = ai) = pi , pi ≥ 0, and∑a i∈AX P(x = ai) = 1

A suõcient condition for the existence of a probabilistic ensemble is the existence

of a random variable with multiple possible outcomes and an associated probability
distribution.4 If the random variable has a ûnite number of outcomes, this probability

distribution takes the form of amass function, assigning a value, pi , to each possible

outcome. If the random variable has an inûnite number of outcomes, the probability

distribution takes the formof a density function, assigning a value, pi , to the outcome

falling within a certain range. In either case, multiple possible outcomes and a

probability distribution over those outcomes is suõcient to deûne a probabilistic

ensemble.5

If a physical system has multiple possible outcomes and a probability distribution

associatedwith those outcomes, then that physical system can be treated as a probab-

ilistic ensemble. If a neuron has multiple possible outcomes (e.g. ûring or not), and

a probability distribution over those outcomes (re�ecting the chances of it ûring),

then the neuron can be treated as a probabilistic ensemble.

Shannon information is a scalar quantitymeasured in bits. It is predicated of at least

three diòerent types of entity: ensembles, outcomes, and ordered pairs of ensembles.

4he term ‘outcome’ here is not meant to imply that this is the output of a causal process.

5In principle, an ensemblemight have only one outcome (necessarily, with probability 1). As

we will see, this corresponds to an ensemble and its single outcome having 0 bits of Shannon

information.
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he deûnitions diòer, so let us consider each in turn.

he Shannon information, H(X), of an ensemble is deûned as:

H(X) =∑
i

pi log2
1

pi

he only independent variables in the deûnition of H(X) are the possible outcomes

of the ensemble (the is) and their probabilities (the pis). he Shannon information

of an ensemble is amathematical function of, and only of, these features. herefore,

merely being an ensemble in the sense deûned above – having multiple possible

outcomes and a probability distribution over those outcomes – is enough to deûne a

H(X)measure and bestow a quantity of Shannon information. Any physical system

that is treated as a probabilistic ensemble ipso facto has an associatedmeasure of

Shannon information. If a neuron is treated as an ensemble (because it has multiple

possible outcomes and a probability distribution over those outcomes), then it

automatically has a quantity of Shannon information attached.

he Shannon information, h(x), of an outcome is deûned as:

h(x = ai) = log2
1

pi

H(X) is the expected value of h(x) taken across all possible outcomes of ensemble

X. he only independent variable in h(x) is the probability of the outcome, pi . his

means that, again, the existence of an ensemble is a suõcient condition for satisfying

the deûnition of h(x). If an ensemble exists, each of its outcomes has a probability

and ipso facto has ameasure of Shannon information. No further conditions need

to bemet. If a neuron is treated as an ensemble, each of its outcomes (e.g. ûring or

not ûring) has an associated probability, and hence each has a quantity of Shannon

information attached.

here are many Shannon measures of information deûned for ordered pairs of
ensembles.6 Common ones include:

Joint information:

H(X ,Y) = ∑

xy∈AXAY

P(x , y) log2
1

P(x , y)

Conditional information:

6Onemember of the pair is usually called the ‘sender’ and the other the ‘receiver’.
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H(X ∣ Y) = ∑
y∈AY

P(y) ∑
x∈AX

P(x ∣ y) log2
1

P(x ∣ y)

Mutual information:

I(X;Y) = H(X) −H(X ∣ Y)

hese measures diòer from each other in important ways, but again, a suõcient

condition for satisfying any one of them is that a physical system has multiple

possible outcomes and a probability distribution over their respective outcomes.

Two ensembles, X and Y , have individual outcomes and probability distributions

over those outcomes. he Shannon measures above assume that there is also a joint

probability distribution, P(X ,Y), which describes the probability of any given pair

of outcomes from the two ensembles occurring.7 If ensembles X and Y exist, and

if pairs of their respective outcomes have probabilities (even if some are 0), then

the Shannon measures of joint information, conditional information, andmutual

information are deûned. Consequently, if two neurons are treated as two ensembles,

and if there is a joint probability distribution over pairs of their respective outcomes,

then those neurons have associated measures of joint information, conditional

information, andmutual information.

A suõcient condition for a physical system to be ascribed Shannon information

is that it has multiple possible outcomes and a probability distribution over those
outcomes (or pairs of outcomes). he Shannon information of an ensemble, a single

outcome, or a pair of ensembles is a function of, and only of, the possible outcomes

and probability distribution associated with that ensemble, single outcome, or pair.

If a physical system is treated as an ensemble (or a pair whose joint outcomes have

probabilities), it ipso facto has Shannon information.

If a physical system changes the probabilities associated with its possible outcomes

over time, its associated Shannon measures are likely to change too. Such a system

may be described as ‘processing’ Shannon information. his change could happen

in at least two ways. If a physical system modiûes the probabilities associated with

its physical states occurring (e.g. a neuron makes certain physical states such as

7P(X ,Y) deûnes conditional probabilitymeasures, such as P(X ∣ Y).
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ûring more or less likely), it can be described as processing Shannon information.8

Alternatively, if the ûring of the neuron represents a probability distribution over

possible outcomes, and that represented probability distribution changes over time –

perhaps as a result of learning or inference – then that neuron’s associated Shannon

measures will change too. In both cases, probability distributions and Shannon

information change. But distinct probability distributions and distinct measures of

Shannon information change in each case. he remainder of this paper will unpack

the distinction between the two.

3 he traditional kind of Shannon information

Traditionally, Shannon information has been used as a building block when nat-
uralising representation. Many versions of information-theoretic semantics try to

explain semantic content in terms of Shannon information. hese accounts aim to

explain how representation arises from Shannon information. Such theories o�en

claim that Shannon information is a source of naturalistic, objective facts about

representational content. Dretske formulated one of the earliest such theories.9

Dretske’s (1981) theory aimed to entirely reduce facts about representational content

to facts about Shannon information. More recently, other accounts – including

Dretske’s later (1988; 1995) views – have proposed that an information-theoretic

condition is only one part of a larger naturalistic condition on representational con-

tent. Additional conditions include variously conditions on teleology, instrumental

(reward-guided) learning, structural isomorphism, and/or appropriate use.¹0 In

what follows, Iwill focus solely on the information-theoretic part of such a semantic

theory.

Information-theoretic semantics attempts to explain representation in terms of one

physical state ‘carrying information’ about another physical state. he relationship

of ‘carrying information’ is assumed to be a precursor to, or a precondition for,

certain varieties of representation. In the context of the brain, such a theory says:

8One way in which this could occur is during learning and other kinds of long-term plasticity.

However, similar changes also occur during short-term processes. When a neuron ûres, it makes a

speciûc outcome – ûring – certain. hat will aòect the probabilities associated with other neurons

in the brain (making their respective outcomes of ûring more or less probable), and hence change

their associated Shannon measures. Neuroscientists can track how these Shannon measures change

as a speciûc outcome propagates in the brain during cognition. hanks to Nick Shea for this point.

9Prior to Dretske’s work, Shannon information had been linked to semantic content, although

not always in reductive fashion (Bar-Hillel and Carnap, 1964; Wiener, 1961).

¹0SeeMillikan (1984); Papineau (1987); Dretske (1988); Shea (2007); Shea (2014a); Skyrms (2010);

W. M. Ramsey (2016) for a range of such proposals. Note that some of these authors argue that

mental representations sometimes gain their content solely on the basis of non-Shannon factors.

hanks to an anonymous referee for pointing this out.
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(R) Neural state, n (from N), represents an environmental state, s (from S), only
if n ‘carries information’ about s.

Implicit in R is the idea that neural state, n, and environmental state, s, come from
a set of possible alternatives. According to R, neural state n represents s only if n
bears the ‘carrying information’ relation to s and not to other outcomes. Diòerent

neural states could occur in the brain (e.g. diòerent neurons in a population might

ûre). Diòerent environmental states could occur (e.g. a face or a house could be

present). Crudely, the reason why certain neural ûrings represent a face and not a

house is that those ûrings, and only those ûrings, bear the ‘carrying information’

relationship to face outcomes; they do not bear this relationship to house outcomes.
R implicitly assumes that we are dealing with multiple possible outcomes: multiple

possible representational vehicles (N) andmultiple possible environmental states

(S). It names a special relationship between individual outcomes that is necessary

for representation. Representation occurs only when n from N bears the ‘carrying

information’ relation to s from S.

he primary task for an information-theoretic semantics is to explain what this car-

rying information relation is. Diòerent versions of information-theoretic semantics

do this diòerently.¹¹ heories can be divided into roughly two camps: those that are

‘correlational’ and those that invoke ‘mutual information’.

he starting point of ‘correlational’ theories is that one physical state ‘carries in-

formation’ about another just in case there is a statistical correlation between the

two that satisûes some probabilistic condition. his still leaves plenty of questions

unanswered: What kind of correlation (Pearson, Spearman, Kendall, mutual in-

formation, or something else)?¹² How should physical states be typed so that a

correlation can be measured? How much correlation is enough for information

carrying? Does it matter if the correlation is accidental or underwritten by a law or

disposition?

Rival information-theoretic semantics take diòerent views. Consider the following

three proposals:

1. P(S = s ∣ N = n) = 1

¹¹he relation of ‘carrying information’ is also sometimes described as one physical state ‘having

natural information’ about another (see Stegmann, 2015).

¹²Millikan (2001) suggests that one should look at the probabilistic relations that are ‘learnable’

for an agent: A is correlated with B, and hence carries information, if B is learnable (or inferable)

from A. However, any degree of probabilistic dependence between A and B (no matter how slight)

could, in principle, allow an agent to learn, or infer, one from the other. With suitable rewards, even

themildest degree of probabilistic dependence could be a target of learning as an agent could be

arbitrarily incentivised to do so. he notion of a ‘learnable’ relation – if it is not merely a synonym

for not probabilistically independent – is as much in need of explication as the notion of ‘correlation’.
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2. P(S = s ∣ N = n) is ‘high’

3. P(S = s ∣ N = n) > P(S = s ∣ N ≠ n)

Dretske (1981) endorses (1): a neural state carries information about an environ-

mental state just in case an agent, given the neural state, could infer with certainty

that the environmental state occurs (and this could not have been inferred using

the agent’s background knowledge alone). Millikan (2000; 2004) endorses (2): the

conditional probability of the environmental state, given the neural state, need only

be ‘high’, where what counts as ‘high’ is a complex matter involving the correla-

tion having in�uenced past agential use via genetic selection or learning.¹³ Shea

(2007) and Scarantino and Piccinini (2010) propose that the correlation should

be understood in terms of probability raising, (3): the neural state should make

the occurrence of the environmental statemore probable than it would have been

otherwise.

At ûrst glance, theremay seem nothing particularly Shannon-like about proposals

(1)–(3). Probability theory alone is suõcient to express the relevant condition on rep-

resentation. hese theories are perhaps better described as ‘probabilistic’ semantics

than ‘information-theoretic’ semantics.¹4 Nevertheless, there is a legitimate way in

which these accounts do entail that cognition is Shannon information processing.

According to (1)–(3), ‘carrying information’ is a relationship between particular

outcomes and those outcomes must come from ensembles that have probability

distributions. Remember that a suõcient condition for a system to have Shannon

information is that it has multiple possible outcomes and a probability distribution
over those outcomes. (1)–(3) assure us that this is true of a cognitive system that con-

tains representations. According to (1)–(3), the representational content of a neural

state arises when that state is an outcome from an ensemble with other possible

outcomes (other possible neural states) that could occur with certain probabilities

(and probabilities conditional on various possible environmental outcomes). If

cognition involves representation, and those representations gain their content by

any of (1)–(3), then cognition ipso facto involves Shannon information. Shannon

information attaches to representations because of the probabilistic nature of their

vehicles. According to (1)–(3), that probabilistic nature is essential to their rep-

resentational status. herefore, to the extent that cognition can be described as

processing representations, and to the extent that we accept one of these versions of

information-theoretic semantics, cognition can be described as processing states

with a probabilistic nature, and so, processing states with Shannon information.

‘Mutual information’ versions of information-theoretic semantics unpack ‘carrying

¹³See Stegmann (2015), pp. 873–874 for helpful analysis ofMillikan’s view.

¹4Timpson (2013), pp. 41–42 makes a similar point with regard to Dretske’s (1981) theory, and

related criticisms are raised by commentators for Dretske (1983).
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information’ diòerently. hey invoke the Shannon concept ofmutual information –

or, rather, pointwisemutual information, the analogue ofmutual information for

pairs of single outcomes. he familiar notion ofmutual information I(X;Y) is the

expected value of pointwisemutual informationPMI(x , y) across all outcomes from
a pair of ensembles.¹5 Pointwisemutual information for a pair of single outcomes,

x , y, is deûned as:

PMI(x , y) = log2
P(x , y)

P(x)P(y)
= log2

P(x ∣ y)
P(x)

= log2
P(y ∣ x)
P(y)

Skyrms (2010) and Isaac (2019) propose that the information carried by a phys-

ical state, n, (its ‘informational content’), is a vector consisting of the PMI(n, s)
value for every possible environmental state, si , from S, given that n from N :
⟨PMI(n, s1), . . . ,PMI(n, sn)⟩. Isaac identiûes themeaning or representational con-

tent of n with this PMI-vector. Skyrms says that themeaning or content is likely to

be amore traditional semantic object, such as a set of possible worlds – this set is

derived from the PMI-vector by considering the environmental states that generate

high-value elements in the vector; the representational content is the set of possible

worlds in which high PMI-value environmental states occur.

Like Skyrms and Isaac, Usher (2001) and Eliasmith (2005b) appeal to pointwise

mutual information to deûne ‘carrying information’. Unlike Skyrms and Isaac,

they deûne it as a relation that holds between a single neural state, n, and a single

environmental state, s. hey say that n carries information about s just in case

s is the environmental state for which PMI(n, s) has its maximum value given

neural state n. Neural state n carries information about the s that produces the

peak-value element in its PMI-vector. Usher and Eliasmith connect this to what is

measured in ‘encoding’ experiments in neuroscience. In an encoding experiment,

many environmental states are presented to a brain and researchers look for the

environmental state that best predicts a speciûc neural response – that yields the

highest PMI(n, s) as one varies s for some ûxed n. Usher and Eliasmith oòer a

second, conceptually independent deûnition of ‘carrying information’. his is based

around what is measured in ‘decoding’ experiments. In a decoding experiment,

researchers examine many neural states and classify them based on which one

best predicts an environmental state – i.e. which neural state n yields the highest

PMI(n, s) for a ûxed s. Here, instead of looking for themaximum PMI(n, s) value
as one varies s and keeps n constant, one looks for themaximum PMI(n, s) value
as one varies n and keeps s constant. here is no reason why the results of encoding

and decoding experiments should coincide: they pick out two diòerent kinds of

information-theoretic relationship between the brain and its environment. Usher

¹5I(X;Y) = ∑x ,y∈AX ,AY
P(x , y)PMI(x , y)
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and Eliasmith argue that they provide diòerent, complementary, and equally valid

accounts of representational content.

On each of these semantic theories, Shannon information is ascribed to a cognitive

system because of the probabilistic properties of neural states qua vehicles. It is

because a given neural state is an outcome from a set of possible alternative states,

combinedwith the probability of various environmental outcomes, that the cognitive

system has the Shannon information properties relevant to representation and

hence to cognition. In the next section, I describe a diòerent way in which Shannon

information enters into cognition. Here, the relevant information-theoretic quantity

arises not from the probabilistic nature of the physical vehicles and environmental

states, but from its representational content. ‘Probabilistic’ models of cognition claim

that the representational content of neural states is probabilistic. his means that

Shannon information attaches to a cognitive system in a new way: via its content

rather than via the probabilistic occurrence of its neural vehicles.

4 he new kind of Shannon information

Probabilisticmodels of cognition, like the accounts discussed in the previous section,

ascribe representations to the brain. Unlike the previous accounts, thesemodels

do not aim to naturalise representational content. hey help themselves to the

existence of representations. heir claim is that these representations have a par-

ticular kind of content. hey are largely silent about how these representations get

this content. In principle, probabilisticmodels of cognition are compatible with a

variety of underlying semantic theories, including versions of information-theoretic

semantics.¹6

he central claim of a probabilisticmodel of cognition is that neural representations

have probabilistic representational content. Traditional, ‘categorical’ approaches

assume that neural representations have single outcomes as their representational

content. Under a categorical approach, a neural state, n, represents a single environ-

mental outcome (or a single set of outcomes). hinking about neural representation

in these terms has prompted description of neural states early inV1 as edge detectors:
their activity represents the presence (or absence) of an edge at a particular angle in

a portion of the visual ûeld. he represented content is a particular outcome (edge
at ~45 degrees). Similarly, neurons in the inferior temporal (IT) cortex are described

as hand detectors: their activity represents the presence (or absence) of a hand. he

represented content is a single outcome (hand present). Similarly, neurons in the

fusiform face area (FFA) are described as face detectors: their activity represents the

¹6I discuss how information-theoretic semantics might interact with probabilistic models of

cognition in Section 6.
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presence (or absence) of a face. he represented content is a single outcome (face
present) (for example, see Gross, 2007; Kanwisher, McDermott and Chun, 1997;

Logothetis and Sheinberg, 1996).

here is increasing suspicion that representation in the brain is not like this. Con-

tent is rarely categorical (hand present); rather, what is represented is a probability

distribution over many possible states. he brain represents many outcomes sim-

ultaneously in order to ‘hedge its bets’ during processing. his allows the brain

to store, and make use of, information about multiple possible outcomes if it is

uncertain which is the true one. Uncertainty may come from unreliability in the

perceptual hardware, or from the brain’s epistemic situation that even with perfectly

functioning hardware it only has incomplete access to its environment.

Ascribing probabilistic representations to a cognitive agent is not a new idea (de

Finetti, 1990; F. P. Ramsey, 1990). However, there is an important diòerence between

past approaches and new probabilistic models of cognition. In the past, probab-

ilistic representations were treated as personal-level states of a cognitive agent –

‘credences’, ‘degrees of belief ’, or ‘personal probabilities’. In the newmodels, probabil-

istic representations are treated as states of subpersonal parts of the agent – of neural

populations, or single neurons. heir novel claim is that, regardless of whichever

personal-level states that are attributed to an agent, various parts of that agent token

diverse (and perhaps even con�icting) probabilistic representations. hinking in

these terms has prompted redescription of neural states early in V1 as probabilist-

ically nuanced ‘hypotheses’, ‘guesses’, or ‘expectations’ about edges. heir neural

activity does not represent a single state (edge at ~45 degrees) but a probability

distribution over multiple edge orientations (Alink et al., 2010). he represented

content is a probability distribution over how the environment stands with respect

to edges. Similarly, neural activity in the IT cortex does not represent a single state of

aòairs (hand present) but a probability distribution over multiple possible outcomes

regarding hands. he represented content is a probability distribution over how the

environment stands with respect to hands. Similarly, neural activity in FFA does

not represent a single state of aòairs (face present) but a probability distribution over

multiple possible outcomes regarding faces. he represented content is a probability

distribution over how the environment stands with respect to faces (Egner,Monti

and Summerûeld, 2010).

Traditional models of cognition tend to describe cognitive processing as a computa-

tionally structured inference over speciûc outcomes – if there is an edge here, then
that is an object boundary. Probabilisticmodels of cognition in contrast describe

cognitive processing as a computationally structured inference over probability

distributions – if the probability distribution of edge orientations is this, then the
probability distribution of object boundaries is that. Cognitive processing is a series
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of steps that use one probability distribution to condition, or update, another probab-

ility distribution.¹7 Neural representations may conceivablymaintain a probabilistic

character right until the moment that the brain is forced to plump for a speciûc

outcome in action. At that point, the brain may select themost probable outcome

from its current represented probability distribution conditioned on all its available

evidence (or some other point estimate that is easier to compute).

Modelling cognition as probabilistic inference does not mean modelling cognition

as non-deterministic or chancy. he physical hardware and algorithms underlying

the probabilistic inferencemay be entirely deterministic. Consider that when your

electronic PCûlters spammessages from incoming emails it performs a probabilistic

inference, but both the PC’s physical hardware and the algorithm that the PC

follows are entirely deterministic. A probabilistic inference takes representations of

probability distributions as input, yields representations of probability distributions

as output, and transforms input to output based on rules of valid (or pragmatically

eõcacious) probabilistic inference. he physical mechanism and the algorithm for

processing representations may be entirely deterministic. What makes the process

probabilistic is not the chancy nature of vehicles or rules but that probabilities

feature in the represented content that is being manipulated.

Perhaps the best-known example of a probabilistic model of cognition is the

‘Bayesian brain’ hypothesis. his says that brains process probabilistic representa-

tions according to rules of Bayesian or approximately Bayesian inference (Knill and

Pouget, 2004). Predictive coding provides one proposal about how such inference

could be implemented in the brain (Clark, 2013; Friston, 2009). It is worth stressing

that themotivation for ascribing probabilistic representations to the brain, and for

probabilisticmodels of cognition in general, is broader than that for the Bayesian

brain hypothesis (or for predictive coding). he brain’s inferential rules could, in

principle, depart very far from Bayesianism and still produce adaptive behaviour

under many circumstances. It remains an open question to what extent humans are

Bayesian (or approximately Bayesian) reasoners. Probabilistic techniques developed

in AI, such as deep learning, reinforcement learning, and generative adversarial

models can produce impressive behavioural results despite having complex and

qualiûed relationships to Bayesian inference. he idea that cognition is a form of

probabilistic inference is a more general idea than that cognition is Bayesian. A

researcher in cognitive sciencemay subscribe to probabilistic representation in the

brain even if they take a dim view of the Bayesian brain hypothesis.¹8

he essential diòerence between a categorical representation and a probabilistic

¹7Conditional probabilities tell the cognitive system how to update its estimate of one variable

based on its knowledge about other variables.

¹8SeeMa (2012).
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one lies in its content. Categorical representations aim to represent a single state of

aòairs. In Section 3, we saw that schema R treats representation as a relationship

between a neural state, n, and an environmental outcome, s. Representational

content is typically speciûed by a truth, accuracy, or satisfaction condition. Meeting

this condition is assumed to be largely an all-or-nothing matter. A categorical

representation eòectively ‘bets all its money’ that a certain outcome occurs. An

edge detector represents there is an edge. Multiple states of aòairs may sometimes

feature in the representational content (for example, there is an edge between ~43–47
degrees), but those states of aòairs are grouped together into a single outcome that

is represented as true. here is no probabilistic nuance, or apportioning of diòerent

degrees of belief, to diòerent outcomes.

In contrast, probabilistic representations aim to represent a probability distribution

over multiple outcomes. he probability distribution is a measure of how much

the system ‘expects’ that the relevant outcomes are true. Unlike categorical repres-

entations, the represented content does not partition the possible environmental

states into only two classes (true and false). Representation is not an all-or-nothing

matter but involves assigning a probability weight to various possible outcomes. As

we will see in the next section, these outcomes need not coincide with the possible

outcomes of S. Whereas categorical representational content is typically speciûed

by a truth, accuracy, or satisfaction condition, probabilistic representational content

is typically speciûed by a probability mass or density function over a set of possible

outcomes.

In principle, probabilistic representations could use any physical vehicle, and any

formal format. here is nothing about the physical make-up of a representational

vehicle that determines whether it is categorical or probabilistic. Either type of

representation could also, in principle, use any number of diòerent formal formats

to organise its structure and guide the algorithms that operate on it. Possible formal

formats for a representation include being a setting of weights in a neural network,

a symbolic expression, a directed graph, a ring, a tree, a region in continuous space,

or an entry in a relational database (Griõths, Chater et al., 2010; Tenenbaum et al.,

2011). he choice of physical vehicle and representational format aòects how easy

it is to implement an inference with computation in a speciûc physical context

(Marr, 1982). Certain physical vehicles and certain formal formats aremore apt to

serve certain computations than others. But in principle, there is nothing about the

physical make-up or formal structure of a representation that determines whether

the representation is categorical or probabilistic. hat is determined solely by its

represented content.

he preceding discussion should not be taken as suggesting that amodel of cognition

must employ only one type of representation (categorical or probabilistic). here is
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no reason why both types of representation cannot appear in amodel of cognition,

assuming there are appropriate rules to take the cognitive system between the

two. Neither does the discussion suggest that one type of representation cannot be

reduced to the other. A variety of such reductions may be possible. For example,

a cognitive system might use structured complexes of traditional representations

to express the probability calculus and thereby express probabilistically nuanced

content with categorical representations (maybe this is what we do with the public

language of mathematical probability theory). Alternatively, a cognitive system

might use structured complexes of probabilistic representations to represent all-

or-nothing-like truth conditions. Feldman (2012) describes a proposal in which

categorical representations are approximated by probabilistic ones with strongly

modal (sharply peaked) probability distributions.¹9 Categorical and probabilistic

representations may mix in cognition, and perhaps, given the right conditions, one

may give rise to the other.²0

5 Two kinds of information processing

In Section 1, we assumed that cognition is proûtably described by saying it involves

representations. In Section 2,we saw thathavingmultiple outcomes and a probability

distribution over those outcomes is suõcient to have an associated measure of

Shannon information. We have now seen, in Sections 3 and 4, twoways inwhich the

representations involved in cognition can havemultiple outcomes and probability

distributions associated with them. Consequently, Shannon information may attach

to cognition in two separate ways. What characterises the Shannon information of

Section 3 is that it is associated with probability of the vehicle occurring (conditional

on various environmental outcomes). What characterises the Shannon information

of Section 4 is that it is associated with the probabilities that appear inside the

represented content.

he degree to which these two quantities of Shannon information diòer depends

on the degree to which the two underlying sets of outcomes and probability dis-

tributions diòer. In this section, I argue that they typically involve diòerent sets of
outcomes, diòerent numerical probability values, and they must involve diòerent

kinds of probability.

Diòerent sets of outcomes. In Section 3, the relevant set is the set of possible neural
and environmental states. he outcomes are the objective possibilities – neural

¹9Feldman calls these ‘symbolic representations’, but his claim is about their content, not about

the representational format of their vehicles.

²0Also see Rahnev (2017) for models of cognition that are ‘intermediate’ between categorical and

probabilistic representation.
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and environmental – that could occur. What interests Dretske, Millikan, Shea,

Skyrms, and others is to know whether a particular neural state from a set of

alternatives (N) occurs conditional on a particular environmental state from a set of

alternatives (S).²¹ In contrast, in Section 4, the relevant outcomes are the represented
possible states of the environment. hese are the ways that the brain represents the

environment could be. his set of represented environmental possibilities need

not be the same as what is objectively possible. A cognitive system might make a

mistake about what is possible just as it might make amistake about what is actual:

it might represent an environmental outcome that is impossible (e.g. winning a

lottery that the agent never entered) or it might fail to represent an environmental

state that is possible (e.g. that it is a brain in a vat). Unless the cognitive system

represents all and only the objectively possible outcomes, there is no reason to think

that its set of represented outcomes will be the same as the set of possible outcomes

in Section 3. Hence, the set of outcomes represented by a neural state need not be

the same as the set of outcomes S. Moreover, for the two sets of outcomes over

which probabilities are ascribed to be the same, the brain would need to represent

not only the possible environmental states (S) but also its possible neural states (N).

Only in the special case of a cognitive system that (a) represents all and only the

objectively possible environmental states and (b) represents all and only its own

possible neural states would the respective sets of outcomes which are assigned

probabilities coincide.

Diòerent probability values. Suppose that a cognitive system, perhaps due to some

design quirk, does represent all and only the objectively possible environmental and

neural states. In such a case, the numerical probability values associated with the

outcomes are still likely to diòer. In the context of the projects of Section 3, these

probability values measure the objective chances, frequencies, propensities, or some

similar measure of a neural state occurring conditional on a possible environmental

state. What interests Millikan, Shea, and others are these objective probabilistic

relations between neural states and environmental states. In contrast, for the projects

of Section 4, the probability values are the cognitive system’s estimation of how likely

each outcome is, not its objective probability. Brains are described as having ‘priors’

– probabilistic representations of various outcomes – and a ‘likelihood function’ or

‘probabilistic generativemodel’ – a probabilistic representation of the relationships

between the outcomes. Psychologists are interested in how the brain uses its priors

and generative model to make inferences about unknown events, or in how it

updates its priors in light of new evidence. All the aforementioned probabilities

are the brain’s guesses about the possible outcomes and the relationships between

them. Only a God-like cognitive agent, one who knew the truth about the objective

²¹Or whether an environmental state occurs conditional on some neural state occurring. Each

can be exchanged for the other via Bayes’ theorem.
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probabilities of events and their relations, would assign the right probability values

to the various outcomes and relations. Such a system would have a veridical (and a
complete) probabilistic representation of its environment, its own neural states, and

the relationships between them. his may be a goal to which a cognitive system

aspires, but it is surely a position that few achieve.

Diòerent kinds of probability. Assume for the sake of argument that we are dealing

with a God-like cognitive agent who has a complete and veridical probabilistic

representation of its environment and its neural states. Even for that agent, there

are still two distinct types of Shannon information. his is because its respect-

ive probability values, even if they agree numerically, measure diòerent kinds of
probability. he P(⋅)s measure something diòerent in each case. In the context

of the projects of Section 3, the P(⋅) values measure objective probabilities. hese

may be chances, frequencies, propensities, or whatever else corresponds to the

objective probability of the relevant outcome occurring.²² In the context of the

projects of Section 4, the P(⋅) values measure subjective probabilities. hese are

the system’s estimation of how likely it thinks the relevant outcomes are. Chances,

frequencies, propensities, or similar are not the same as a system’s representation

of how likely an event is to occur. Even for a God-like cognitive agent – for whom

the two are stipulated as equal in terms of numerical value – what is measured is

distinct. Subjective probabilities, even if they agree in terms of numerical value

with objective probabilities, do not become objective probabilities merely because

they happen to accurately re�ect them. No more than a description of a Komodo

dragon becomes a living, breathing Komodo dragon if that description happens to

be accurate. One is a representation, the other is a state of the world. In the case

of our God-like agent, one is a distribution of objective probabilities and the other

is the system’s (veridical) representation of possible outcomes and their respect-

ive credences. Well-known normative principles connect subjective and objective

probabilities. However, no matter which normative principles one endorses, and

regardless of whether a God-like agent satisûes them, the two kinds of probability

are distinct.²³

Two kinds of probability distribution feature in cognition. Each generates an asso-

ciatedmeasure of Shannon information. he two Shannon measures are distinct:

²²Diòerent theorists in Section 4 take diòerent views about the nature of these objective probabil-

ities. Shea (2007) says the probabilities are chances (although he does not say what chances are);

Millikan (2000) focuses on the idea that they are frequencies and she considers the consequent

reference class problem. No one entertains the hypothesis that they are subjective probabilities.

²³Skyrms agrees: ‘objective and subjective information’ may be carried by a neural state (2010,

pp. 44–45). Skyrms’ concern is with the objective probabilities that are associated with neural states

and environmental states. However, he agrees that subjective probabilities (and, hence, subjective

information) may be carried by a neural state qua content.
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they are likely to involve diòerent outcomes, diòerent probability values, andmust

involve diòerent kinds of probability. his allows us to make sense of two kinds

of Shannon information being processed in cognition: two kinds of probability

distribution change under probabilisticmodels of cognition. Processing involves

changes in a system’s representational vehicles and changes in a system’s probabilistic

represented content. Information-processing algorithms that govern cognition can

be deûned over either or both of these Shannon quantities.²4

6 Relationship between the two kinds of information

My claim in the previous section was that the two kinds of Shannon information

are distinct. his does not rule out all manner of interesting connections between

them. hat they are distinct does not mean that they can vary independently of

each other. his section highlights some possible connections.

6.1 Connections via semantic theory

One is likely to be persuaded of deep connections between the two kinds of Shannon

information if one endorses some form of information-theoretic semantics for

probabilistic representations. he probabilisticmodels described in Section 4 are

silent about how neural representations get their content. In principle, thesemodels

could be combined with a range of semantic proposals, including some version of

the information-theoretic semantics described in Section 3.

Skyrms’ or Isaac’s theory looks the most promising approach to generate an

information-theoretic account of probabilistic content. Both their theories already

attributemultiple environmental outcomes plus a graded response for each outcome.

However, it is not immediately obvious how to proceed. he probability distribution

represented by n cannot simply be assumed to be the probability distribution of

S. As we saw in Section 5, a probabilistic representation may misrepresent the

objective possibilities and their probability values. A second consideration is

that the represented probabilities appear to depend not only on the probabilistic

relations between a representational vehicle and its corresponding environmental

outcomes; they also depend on what else the system ‘believes’. he probability that

a system assigns to there is a face should not be independent of the probability

²4Onemight object that there are not two kinds of Shannon information, but only two applications

of a singlemathematical kind of Shannon information to the brain. However, the same could be

said of objective and subjective probabilities: both are applications of a single kind ofmathematical

probability (tomeasure objective chances and agents’ uncertainties). To the extent that one iswilling

to say that there are two ‘kinds’ of probability (objective and subjective), one should be willing to

say the same for Shannon information.
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that it assigns to there is a person, even if the two outcomes are represented by

diòerent neural vehicles. A noteworthy feature of the information-theoretic

accounts of Section 3 is that they disregard relationships of probabilistic coherence

between representations in assigning representational content. hey assign content

piecemeal, without considering how the contents may cohere. How to address

these two issues and create an information-theoretic semantics for probabilistic

representations is presently unclear.²5

If an information-theoretic semantics for probabilistic neural representations could

be developed, it would provide a bridge between the two kinds of Shannon informa-

tion. One kind of information (associated with the represented probabilities) could

not vary independently of the other (associated with the objective probabilities).

he two would correlate at least in the cases to which this semantic theory applied.

Moreover, if the semantic theory held as a matter of conceptual or logical truth,

then the connection between the two Shannon quantities would hold with a similar

strength. An information-theoretic account of probabilistic representation oòers

the prospect of a conceptual or logical connection between the two types of Shan-

non information. In the absence of such a semantic theory, however, it is hard to

speculate on exactly what the nature of that connection would be.

If one is sceptical about the prospects of an information-theoretic semantics for

probabilistic neural representation, then onemay be less inclined to see deep con-

ceptual or logical connections between the two kinds of Shannon information. If

one endorses Grice’s (1957) theory of non-natural meaning, for example, then the

two Shannon quantities may look conceptually and logically independent. Grice

said that in cases of non-natural meaning, representational content depends on

human intentions and not, for example, on the objective probabilities of a physical

vehicle occurring in conjunction with environmental outcomes. here is nothing

to stop a physical vehicle representing any content, provided it is underwritten by

the right intentions. I might say that the proximity of Saturn to the Sun (appropri-

ately normalised) represents the probability that Donald Trump will be impeached.

Provided this is underwritten by the right intentions, probabilistic representation

occurs. Representation is, in this sense, an arbitrary connection between a vehicle

and a content that can be set up or destroyed at will, without regard for the prob-

abilities of the underlying events.²6 If one endorses Grice’s theory of non-natural

meaning, there need be no connection between the probabilities of neural and

environmental states and what those states represent, and one Shannon measure

could vary independently of the other. his is not to say that the two measures

²5See Shea (2014b); Shea (2018) for a promising approach.

²6Skyrms (2010) argues against this that ‘all meaning is natural meaning’ (p. 1). All meaning

depends on the physical probabilities that connect vehicles and their content.
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would not correlate in the brain; just that, if they correlate, that would not �ow from

the semantic theory.

6.2 Connections via empirical correlations

Regardless of connections that may arise from one’s semantic theory, there are likely

to be other reasons why the two measures of Shannon information would correlate

in the brain. he nature of these connections will depend on the strategy that the

brain uses to ‘code’ its probabilistic content. his coding scheme describes how

probabilistic content –whichmay consist of probability values, the overall analytical

shape of the probability distribution, or summary statistics like themean or variance

–maps onto physical activity in the brain or onto physical relations between the brain

and environment. he speciûc scheme that the brain uses to code its probabilistic

content is currently unknown and the subject of much speculation. Suggested

proposals include that the ûring rate of a neuron, the number of neurons ûring in a

population, the chance of neurons ûring in population, or the spatial distribution

of neurons ûring in a population is amonotonic function of characteristic features

of the represented probability distribution (see, for example, Averbeck, Latham

and Pouget, 2006; Barlow, 1969; Deneve, 2008; Fiser et al., 2010; Griõths, Vul and

Sanborn, 2012; Ma et al., 2006; Pouget et al., 2013). According to these schemes,

the probability of various neural physical states occurring varies in some regular

way with their represented probability distributions. his relationship may be

straightforward and simple or it may be extremely complicated and vary in diòerent

parts of the brain or over time. he same applies to the relationship between the two

Shannon quantities. If an experimentalist were to know the brain’s coding scheme,

shemay be able to infer one Shannon measure from the other. But even granted

this were possible, the two kinds of Shannon information would remain distinct,

for the reasons given in Section 5.

Cognitive processing is sometimes deûned over the information-theoretic proper-

ties of the neural vehicles. Saxe, Calderone andMorale (2018) describe how brain

entropy during resting state, as measured by fMRI, correlates with general intelli-

gence. Chang et al. (2018) describe how drinking coòee increases the brain’s entropy

during resting state. Carhart-Harris et al. (2014) describe the relationship between

consciousness and brain entropy, and how this changes a�er taking the psychedelic

drug psilocybin. Rieke et al. (1999) advocate a research programme that examines

information-theoretic properties of neural vehicles (spike trains) and their relation-

ships to possible environmental outcomes. hey argue that information-theoretic

properties of the neural vehicles and environmental outcomes allow us to infer

possible and likely computations that the brain uses and the eõciency of the brain’s

coding scheme. In each of these cases, the Shannon measures are deûned over
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the possible neural vehicles and environmental states, not over their represented

content (although several of the authors suggest that since the two are correlated by

the brain’s coding scheme, we can use one to draw conclusions about the other).

In contrast, Feldman (2000) looks at algorithms deûned over the information-

theoretic properties of the represented content. He argues that the diõculty of

learning a new Boolean concept correlates with the information-theoretic complex-

ity of the represented Boolean condition. Kemp (2012) and Piantadosi, Tenenbaum

and Goodman (2016) extend this idea to general concept learning. hey propose

that concept learning is a form of probabilistic inference that seeks to ûnd the

concept that maximises the probability of the represented classiûcation. his cog-

nitive process is described as the agent seeking the concept that oòers the optimal

Shannon compression scheme over its perceptual data. Gallistel andWilkes (2016)

describe associative learning as a probabilistic inference concerning themost likely

causes of an unconditioned stimulus given the observations. hey describe it in

terms of Shannon information processing: the cognitive system starts with priors

over hypotheses about causes that havemaximum entropy (their probability dis-

tributions are as ‘noisy’ as possible consistent with the data); the cognitive system

then aims to ûnd the hypotheses that provide optimal compression (that maximise

Shannon information) of the represented hypothesis and observed data. In general,

researchers who model cognition probabilisticallymove smoothly between prob-

abilistic formulations and information-theoretic formulations when describing a

cognitive process. In each of the cases described above, the Shannon information is

associated not with the probabilities of speciûc neural vehicles occurring, but with

the probability distributions that they represent (although, again, onemight think

that the two are likely to be related via the brain’s coding scheme).

6.3 Two versions of the free-energy principle

Friston (2010) claims that the ‘free-energy principle’ provides a uniûed theory of how

cognitive and living creatures work. He invokes two kinds of Shannon information

processing and he eòectively describes two separate versions of the free-energy

principle.

First, Friston says that the free-energy principle is a claim about the probabilistic

inference performed by a cognitive system. He claims that the brain aims to predict

upcoming sensory activation and it forms probabilistic hypotheses about the world

that are updated in light of its errors inmaking this prediction. Shannon information

attaches to the represented probability distributions over which the inference is

performed. Friston says that the brain aims to minimise the ‘surprisal’ of – the

Shannon information associated with – new sensory evidence. When the brain

is engaged in probabilistic inference, however, he says that it does not represent
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the full posterior probability distributions as a perfect Bayesian reasoner would

do. Instead, the brain approximates them with simpler probability distributions,

assumed to be Gaussian. Provided the brain minimises the Shannon-information

quantity ‘variational free energy’, it will bring these simpler probability distributions

into approximate correspondencewith the true posterior distributions that a perfect

Bayesian reasonerwould have (Friston, 2009; Friston, 2010). Variational free energy

is an information-theoretic quantity, predicated of the agent’s represented probability

distributions, thatmeasures how far those subjective probability distributions depart

from the optimal guesses of a perfect Bayesian reasoner. According to Friston, the

brain minimises ‘free energy’ and so approximates an ideal Bayesian reasoner.

Friston makes a second, conceptually distinct, claim about cognition (and life in

general) aiming to minimise free energy. In this context, his goal is to explain how

cognitive (and living) systems maintain their physical integrity and homoeostatic

balance in the face of a changing physical environment. Cognitive (and living)

systems face the problem that their physical entropy tends to increase over time: they

generally becomemore disordered and the chance increases that they will undergo

a fatal physical phase transition. Friston says that when living creatures resist this

tendency, they minimise free energy (Friston, 2013; Friston and Stephan, 2007).

However, the free energyminimised is not the same as that which attaches to the

represented probabilistic guesses of some agent. Instead, it attaches to the objective

probabilities of various possible (fatal) physical states of the agent occurring in

response to environmental changes. Minimising free energy involves the system

trying to arrange its internal physical states so as to avoid being overly changed

by probable environmental transitions. he system strives to maintain its physical

nature in equipoise with likely environmental changes. he information-theoretic

free energyminimised here is deûned over the objective distributions of possible

physical states that could occur, not over the probability distributions represented

by an agent’s hypotheses.

Minimising one free-energymeasuremay help an agent to minimise the other: a

good Bayesian reasoner is plausiblymore likely to survive in a changing physical

environment than an irrational agent. But they are not the same quantity. Moreover,

any correlation between them could conceivably come unstuck. An irrational agent

could depart far from Bayesian ideals but be lucky enough to live in an hospitable

environment that maintains its physical integrity and homoeostasis no matter how

badly the agent updates its beliefs. Alternatively, an agent might be a perfectly

rational Bayesian and update its beliefs accordingly, but its physical environment

may change so rapidly and catastrophically that it cannot survive or maintain

homoeostasis. Understanding how Friston’s two formulations of the free-energy

principle interact – that pertaining to represented subjective probabilities and that
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pertaining to objective probabilities – is ongoing work.²7

7 Conclusion

Shannon information has traditionally been seen as a rung on a ladder that takes one

to naturalised representation. In this context, Shannon information is associated

with the outcomes and probability distributions of neural and environmental states.

his project, however, obscures a novel way in which Shannon information enters

into cognition. Probabilisticmodels of cognition treat cognition as an inference

over representations of probability distributions. his means that probabilities may

enter into cognition in two distinct ways: as the objective probabilities of neural

vehicles and/or environmental states occurring and as the subjective probabilities

that describe the agent’s expectations. Two types of Shannon information are asso-

ciated with cognition accordingly: information that pertains to the probability of

the neural vehicle occurring and information that pertains to the represented prob-

abilistic content. he former is conceptually and logically distinct from the latter,

just as representational vehicles are conceptually and logically distinct from their

content. Various (conceptual, logical, contingent) relations may connect the two

kinds of Shannon information in the brain, just as various such relations connect

traditional categorical vehicles and their content. Care should be taken, however,

not to con�ate the two. For, as we know,much trouble lies that way.
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