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his chapter examines four triviality arguments from, respectively, Ian Hinckfuss, John

Searle, Hilary Putnam, and David Chalmers. he arguments are of varying strength,

scope, and plausibility. Despite their diòerences, I argue that they succeed in ruling

out a classical ‘mapping’ theory of computational implementation. his theory takes

isomorphism between a formal computational model and a physical system to be a

suõcient condition for implementation. More sophisticated theories depart from a

classical mapping account but defeat triviality arguments only at a cost. Focusing our

attention on performance with respect to the triviality arguments allows costs associated

with a theory of implementation to be measured. I conclude by tentatively proposing

a theory that aims to minimize cost: pluralism about computational implementation.

I argue that triviality arguments should be welcomed. hey provide powerful and

informative constraints on viable theories of computational implementation.

1 Introduction

Triviality arguments seek to show that computational implementation in physical

systems is trivial in some worrisome way. A triviality argument might show that a

theory of implementation attributes computations to too many physical systems, or

that it attributes too many computations to those physical systems that compute,

or both. Triviality arguments threaten to make trouble both for computational

functionalism (the metaphysical claim that implementing a certain computation

is suõcient for having a certain mental state or process) and for computational

explanation in science (the scientiûc practice of explaining mental and behavioral

phenomena in terms of physical computations).
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In this chapter, I examine the triviality arguments of Ian Hinckfuss, John Searle,

Hilary Putnam, and David Chalmers. Although their arguments may appear to

give us cause for dismay, seen in a more positive light, they help us formulate an

improved theory of computational implementation and choose between competing

alternatives. If a theory of computational implementation blocks, or otherwise

avoids bad consequences of, a triviality argument, that is a desirable property of

the theory. Depending on how bad the consequences, it may even be a necessary

property of the theory. Triviality arguments mark out red lines that a theory of

implementation should not cross.

In Section 2, I describe the aim of a theory of computational implementation. In

Section 3, I discuss the structure and target of a triviality argument. In Section 4, I

give four triviality arguments about implementation. In Section 5, I explore how far

these triviality arguments reach. In Section 6, I reply to the objection that we should

simply accept the conclusions of the triviality arguments. In Section 7, I describe

some popular lines of response to the triviality arguments. In the Conclusion, I

argue that we should learn to love the triviality arguments: they shine light on what

would otherwise be murky territory for theory builders. I also propose a theory of

implementation that aims tominimize the cost of responding to triviality arguments:

pluralism about computational implementation.

2 Computational implementation

Roughly speaking, a theory of implementation aims to describe the conditions

under which a physical system does and does not implement a computation.¹

More precisely, a theory of implementation aims to tell us, for a physical system,

X, and abstract computation, Y , the conditions under which ‘X implements Y ’

is true or false. X may be any physical system – an electronic PC, a brain, or the

entire universe. Y may be any abstract formal computation – a Turing machine, a

cellular automaton, an artiûcial neural network, or a C++ program.² A theory of

implementation tells us which conditions the physical system needs to satisfy for it

to implement the computation. Such a theory gives us the truth conditions of claims

about computational implementation. his serves not only as a semantic theory

but also to explicate the concept (or concepts) of computational implementation

as they appear in the computational sciences. A theory of implementation says

¹he discussion in this chapter is phrased in terms of physical implementation. If there are

non-physical states – qualia, ectoplasm, etc. – a theory of implementation may aim to cover their

computational implementation conditions too.

²I will not consider how we should characterize the class of abstract computations. For the

purpose of this chapter, I assume that we know (at least roughly) which abstract formal descriptions

count as computations.
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what we mean by our talk of computational implementation and explains how it

reduces to (hopefully straightforward) conditions regarding abstract computations

and physical systems.

Sometimes, a theory of implementation is also described as a theory of the computa-

tional implementation relation. he relation is envisioned as a metaphysical bridge

between the abstract realm of mathematical entities (Turing machines, ûnite state

automata, . . .) and the concrete realm of physical systems (electronic PCs, brains,

. . .). he relation either obtains or does not obtain between speciûc abstract entities

and speciûc physical systems. If it obtains, then the physical system implements

the computation; if not, then it does not. Conceived this way, a theory of imple-

mentation has an explicitly metaphysical task: to describe a special metaphysical

relation within our ontology. Although ûne as an informal gloss, describing the

goal of a theory of computational implementation in these terms is a strategic error.

It hypostatizes the implementation relation as part of the statement of the prob-

lem and it lumbers us with the task of explaining how such a relation ûts into our

wider ontology. hese are not problems that we need to take on from the start. he

truth of claims about physical systems implementing computations does not require

the existence of a special metaphysical relation between mathematical entities and

physical objects. Still less does it require the existence of mathematical entities to

stand in such a relation. Rendering claims about computational implementation

true or false no more requires the existence of a special metaphysical relation than

rendering claims that use the expression ‘the average man’ true requires the exist-

ence of a special metaphysical object, the average man. A metaphysical relation of

computational implementation may exist, but it is not a commitment that a theory

of computational implementation need make at outset.

A theory of implementation should aim to answer two questions about the truth

conditions of talk about computational implementation:

comp

Under which conditions is it true/false that a physical system implements a

computation?

ident

Under which conditions is it true/false that a physical system implements one

computation rather than another?

he ûrst question concerns the computational status of a physical system. he
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second concerns its computational identity.³ Neither has an easy or uncontroversial

answer.

In seeking to answer comp and ident, a theory of implementation should provide a

theory that is extensionally adequate. he computational sciences already (explicitly

and implicitly) classify physical systems into those that compute and those that

do not. hey further classify members of the class of computing systems by their

computational identity. Many complex judgments are made here, but a few simple

ones can be brie�y stated: electronic PCs compute and their plastic cases do not;

my electronic PC is running Microso� Word and not Grandhe� Auto; not every

electronic PC in the world is currently running the Tor browser. hese judgments

would be regarded as ‘obviously correct’ by a scientist or engineer with a working

grasp of computational implementation. Such judgments, made with conûdence

and receiving widespread agreement in the relevant scientiûc arenas, are important

data points for a theory of implementation to capture.

An adequate theory of implementation need not capture every single data point or

ûnd every one of its claims vindicated in existing practice. We might expect some

degree of divergence between what the theory of implementation says and current

judgments in science. A violation of extensional adequacy may be small or large.

At the small end, it may be accommodated by minor adjustments or qualiûcations

to existing scientiûc practice. At the large end, such accommodation may not be

possible. A theory of implementation may say that current scientiûc practice is

massively in error. It may say that all (or nearly all) physical systems implement

all (or nearly all) computations. here is no question here of accommodation.

Instead, we are put in a bind: either reject the scientiûc practice or reject the theory

of implementation. he triviality arguments aim to demonstrate a violation of

extensional adequacy of the latter kind.

It is worth noting that extensional adequacy is only one desideratumof a good theory

of implementation. Other desiderata include that the theory of implementation be

explanatory: it should explain computational implementation in terms of notions

that are better understood than computational implementation. he theory should

be non-circular: it should explain computational implementation in terms of notions

that are not themselves explained by computational implementation. he theory

should be naturalistic: it should notmake the truth of implementation claims depend

³Attribution of multiple computational identities to a physical system is common in the sciences.

Sometimes the computations are related: for example, when a physical system satisûes several

related formal computational descriptions (e.g. gradient descent, backpropagation, AdaGrad, and

some speciûc machine-learning Python program). Sometimes the computations are not related: for

example, when the physical system has a suõcient number of physical properties to support the

attribution of multiple unrelated computational models. Anderson (2014) argues that the brain is a

computing system of the latter type.
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on human beliefs, interests, or values.4 In Section 7, we will see that theories of

implementation that avoid the triviality arguments o�en do so at the cost of giving

up one or more of these other desiderata.

3 Triviality arguments

Triviality arguments attack the extensional adequacy of a theory of implementation.

hey may focus on a violation of extensional adequacy with respect to comp, ident,

or both. Triviality may arise because a theory of implementation attributes compu-

tations to too many physical systems, attributes too many computations to systems

that compute, or both.

he target in this chapter is a ‘mapping’ account of computational implementation.

his is the account that practitioners in the computational sciences tend to produce

when questioned. It is also the starting point for almost everymore sophisticated the-

ory of implementation. A mapping account of implementation says that a suõcient

condition for computational implementation is the existence of an isomorphism5

between the physical states and transitions of a physical system and the abstract

states and transitions of a computation:6

(M) A physical system X implements a formal computation Y if there is a mapping

f that maps physical states of X to abstract states of the formal computation

Y , such that: for every step-wise evolution S → S′ of the formalism Y , the
following conditional holds: if X is in physical state s where f (s) = S, then X
will enter physical state s′ such that f (s′) = S′

In Section 7, we will see that more sophisticated theories of implementation treat M

as a necessary but not a suõcient condition for computational implementation. Part

of the motivation for this comes from recognition that unmodiûed M is vulnerable

to triviality arguments.

M is simple, clear, explanatory, non-circular, and naturalistic. M also explains

why computations are multiply realizable. Diòerent physical systems (silicon chips,

vacuum tubes, brass cogs, neurons) can implement the same computation because,

despite their physical diòerences, their various physical activities can be isomorphic

to the same abstract structure.

4See Sprevak (2012) formore on these desiderata. See Piccinini (2015) for discussion of additional

desiderata.

5he mapping relation is sometimes called a ‘homomorphism’. he correct term depends on

how one groups physical states into physical state types, which, as we will see, is controversial.

6his condition is adapted from Chalmers (2012).
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4 he arguments

It is worth noting two points before proceeding.

First, the triviality arguments do not depend on M alone. Additional assumptions,

including empirical assumptions about the typical behavior of physical systems, are

required. hese assumptionsmay be true, but they are unlikely to be necessary truths.

In other possible worlds, M may provide non-trivial implementation conditions.

Second, an unproblematic claim about implementation is sometimes confused with

the triviality claims. his claim is that any physical system could, under the right

circumstances, implement any given computation. A rock could, if we were to make

tally marks on it, compute the addition function. A wall could, if we were to attach

electromagnets to control its physical states the right way, run Microso� Word.

hat any given physical system could, in the right circumstances, implement an

arbitrary computation is not at issue in the triviality arguments. What is at issue is

whether these systems do implement that computation. One might expect there to

be a diòerence between the two. (Compare: all hydrogen atoms could be used as

fuel, but not all are.) he triviality arguments aim to show that this expectation is

false. (Almost) all physical systems don’t merely have the potential to implement

any given computation, they actually are implementing it. he threat of the triviality

arguments is thus not a threat about universal realizability in somemodally qualiûed

sense, but a threat about universal realization.

4.1 Hinckfuss’ pail

William Lycan describes a thought experiment originally suggested by Ian Hinck-

fuss:

Suppose a transparent plastic pail of spring water is sitting in the sun.

At the micro level, a vast seething complexity of things are going on:

convection currents, frantic breeding of bacteria and other minuscule

life forms, and so on. hese things in turn require even more frantic

activity at the molecular level to sustain them. Now is all this activity

not complex enough that, simply by chance, it might realize a human

program for a brief period (given suitable correlations between certain

micro-events and the requisite input-, output-, and state-symbols of

the program)? And if so, must the functionalist not conclude that the

water in the pail brie�y constitutes the body of a conscious being, and

has thoughts and feelings and so on? Indeed, virtually any physical

object under any conditions has enough activity going on within it at

the molecular level that, if Hinckfuss is right about the pail of water, the

6



functionalist quickly slips into a panpsychism that does seem obviously

absurd . . . (Lycan, 1981, p. 39)

here is no mention of trivial implementation here, but there is a clear violation of

extensional adequacy. Physical systems that we do not normally think of as imple-

menting computations (pails of water) are doing so and, perhaps more worryingly,

their computational identity is shared with that of our brains and bodies. Hinckfuss

is assuming some form of computational functionalism. He argues that the pail

implements the same computation as the human brain and body, and for this reason

it has the same mental properties as us.

Hinckfuss’ thought experiment may be unnerving, but it is not obvious that it is

fatal to M.

First, it is not clear that his conclusion is unacceptable. Even if we follow the chain

of reasoning to its conclusion, panpsychism is arguably not an untenable position

(Chalmers, 1996b; Goò, 2017; Strawson, 2006). here are good reasons, however, to

jump oò before we reach the conclusion. Computational functionalists rarely claim

that every aspect ofmental life supervenes on the computation that a physical system

performs. Usually, this claim is made only for a subset of mental life: non-conscious

aspects of mental life (Block, 1978; Chalmers, 1996b) or aspects of mental life that

exclude cognitive processes like central cognition (Fodor, 2000). If one were to

remove these aspects of mental life from the thought experiment, it may no longer

seem absurd or objectionable that a pail of water could, over a brief time interval,

implement the same computations as our brain and body.

Second, it is not clear how the thought experiment is supposed to produce a triviality

result. What is imagined is the possibility of an unusual implementation. We need a

reason to think that such an implementation is actual in order to have a triviality

result. here are plenty of strange physical possibilities: spontaneous unmixing

of scrambled eggs, movement of all molecules of air in the room into one corner,

quantum tunneling of my legs through the �oor. Most of the time, science and

engineering assumes that these events will not happen. It is safe to do so because,

even though the events are physically possible, they are unlikely. Perhaps a pail of

water implementing the same computation as a human brain and body is like that.

If so, it does not provide a reason to think that computational implementation is

trivial.

4.2 Searle’s wall

John Searle describes a diòerent thought experiment:
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[I]t is hard to see how to avoid the following results: 1. For any object

there is some description of that object such that under that descrip-

tion the object is a digital computer. 2. For any program and for any

suõciently complex object, there is some description of the object un-

der which it is implementing the program. hus for example the wall

behind my back is right now implementing the Wordstar program, be-

cause there is some pattern of molecule movements that is isomorphic

with the formal structure of Wordstar. But if the wall is implementing

Wordstar, then if it is a big enough wall it is implementing any pro-

gram, including any program implemented in the brain . . . (Searle, 1992,

pp. 208–209)7

Consider, according to M, why Searle’s electronic PC implements WordStar. Inside

his PC are many microscopic physical changes: changes in electrical, thermal,

vibrational, and gravitational state of the physical parts of his PC.His PC implements

WordStar because among these physical changes is one set of changes – the set of

electrical changes – that has a structure that is isomorphic to the formal structure

of WordStar. Searle claims that the same is true of his wall. Inside the wall are many

microscopic physical changes: there are atoms and molecules undergoing electrical,

thermal, vibrational, and gravitational changes. Searle suggests that there are so
many patterns of physical activity inside his wall that there is certain to be at least one

pattern with a structure isomorphic to the formal structure of WordStar. herefore,

just like his PC, his wall implements WordStar. he same reasoning applies to other

computations and to other physical systems provided they are ‘suõciently complex’.

Again, there are problems that should leave one unpersuaded.

First, the restriction to physical systems that are ‘suõciently complex’ is underspe-

ciûed. If ‘suõciently complex’ means having enough patterns of activity, this would

be a restatement of what needs to be shown for triviality: that the physical system

has enough patterns for trivial implementation. We need an independent charac-

terization of the class of physical systems aòected by triviality. We need some idea

of how large this class is, which systems it contains, and whether its members are

relevant to scientiûc practice. If instead one deûnes ‘suõciently complex’ in terms

of the system’s physical size – as Searle seems to suggest – small enough physical

systems relevant to scientiûc practice may be immune to the challenge.

Second, and more worryingly, why should we believe, even of the largest physical

systems, that there are always enough patterns of physical activity to render imple-

mentation trivial? One might agree with Searle that his wall contains many patterns

7Although Searle’s argument is phrased in terms of programs, I will understand it here as

covering any abstract computation; for discussion, see Section 5.

8



of activity. But one might not accept that it contains every pattern of physical activity

– or that it contains a speciûc pattern, such as one isomorphic toWordStar. How can

one be sure that the wall contains this pattern? Searle needs to show, not just that

there aremany patterns of physical activity, but that one can be certain there is a

pattern isomorphic to every possible abstract computation.

4.3 Putnam’s rock

In the Appendix of Representation and Reality (1988), Hilary Putnam presents an

argument that addresses the preceding concerns. While Searle and Hinckfuss aim

to show that a trivializing mapping exists but do not actually show it to us, Putnam

provides a method for ûnding the relevant mapping. Given a physical system, X,
and formal computation, Y , he demonstrates how to map X’s states to Y ’s states so

that X implements Y according to M. Putnam also provides a characterization of

the class of physical systems vulnerable to trivial implementation.

Putnam restricts his triviality argument to inputless ûnite state automata (FSAs).8

In Section 5, we will see how to extend his argument to other types of computer.

Putnam says that the class of physical systems that are vulnerable to his triviality

argument is the class of physical systems that are ‘open’. An ‘open’ physical system is

one that is not isolated from, and hence is in causal interaction with, its environment.

Nearly all physical systems in which we are interested are open in this sense.9 To

illustrate his argument, Putnam chooses a simple inputless FSA that transits between

two abstract states, A→ B → A→ B. He argues as follows.

Pick any open physical system (say, a rock) and any time interval, t0 to tn. Consider

the ‘phase space’ of the rock over this time interval. he phase space is a representa-

tion of every one of the rock’s physical parameters, including the physical parameters

of the rock’s constituent atoms, molecules, and other microscopic parts.¹0 Over time,

the rock will trace a path through its phase space as its physical parameters change.

he rock’s physical parameters will change owing to endogenous physical causes

(its atoms changing state, vibrations, atomic decay, etc.), and because of external

causal in�uences (gravitational, electromagnetic, vibrational, etc.). Putnam argues

that some external in�uences are certain to play the role of ‘clocks’ for the rock:

due to these in�uences the rock will not return to precisely the same set of values

of its physical parameters in the time interval. Putnam calls this the ‘Principle of

Noncyclical Behavior’. He argues that this principle is likely to be true of any open

8See Hopcro� and Ullman (1979); Sudkamp (1998) for a description of FSAs.

9One possible exception is the entire universe (Copeland, Shagrir and Sprevak, 2018).

¹0Putnam only considers the classical properties of physical systems. It is not clear how quantum

mechanical properties would constrain implementation under M.
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physical system.¹¹

Consider the rock’s phase-space trajectory from t0 to tn. By the Principle of Noncyc-

lical Behavior, this path will not cross itself at any point. Putnam also assumes that

the path is continuous in time: it passes through a diòerent point in phase space

at each moment in time. Putnam calls this the ‘Principle of Continuity’. Provided

these two principles hold, each point in the rock’s trajectory through phase space

falls within a unique region. Putnam divides the rock’s phase space into four regions

through which the rock’s state travels during the time interval, and he labels these

r1, r2, r3, r4. hese regions describe the rock’s state during four, equally spaced time

intervals between t0 and tn. Regions in phase space are sets of possible physical

states. A region in phase space deûnes a possible physical state type for the system.

Consequently, we can describe the rock’s physical state during the time interval in

the following way: in the ûrst time interval, the rock is in the physical state type

deûned by r1; in the second, it is in the physical state type deûned by r2; in the third,

in the physical state type deûned by r3; and in the fourth, in the physical state type

deûned by r4.

Using regions of phase space to characterize the rock’s physical state type is a power-

ful tool. It reveals that the rock undergoes multiple changes in its physical state

type during the time interval. One set of such changes is this: r1 → r2 → r3 → r4.
But, Putnam observes, it is not the only set of changes. he rock also undergoes

the following changes: r1 ∨ r3 → r2 ∨ r4 → r1 ∨ r3 → r2 ∨ r4. In other words, as

well as traveling through four neighboring regions of its phase space (r1, r2, r3, r4),
the rock oscillates between two disjoined regions of its phase space (r1 ∨ r3 and
r2 ∨ r4). It is worth stressing that there is nothing objectionable about identifying a

physical state type of a system with a disjunction of regions of phase space. Many

physical state types used for legitimate computational implementations are deûned

this way: for example, net thermal energy and net electric charge. he physical

states that implement the computational states of electronic PCs are o�en highly

disjunctive: they are diverse conûgurations of electrical signals that could occur in

multiple electronic components scattered throughout the machine. Putnam maps

r1 ∨ r3 to computational state A and r2 ∨ r4 to computational state B. We now have

an isomorphism between the physical states and transitions of the rock and the

formal states and transitions of the FSA. According to M, the rock implements the

FSA. he same reasoning applies to other physical systems and other inputless FSAs.

herefore, every open physical system implements every inputless FSA under M.

¹¹Poincaré’s recurrence theorem says that physical systems, if they satisfy certain conditions,

return to a total physical state arbitrarily close to that of their initial conditions a�er a suõciently

long time. However, this theorem only applies to closed systems, and the Poincaré recurrence

period for an open system is likely to be extremely long – longer than the lifetime of the universe.
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here are three common objections to Putnam’s argument.

First, Putnam’s argument assumes that any disjunction of regions in phase space

deûnes a legitimate physical state type for implementing a computational state. We

have already seen there is nothing inherently objectionable about a disjunction

of phase-space regions implementing a single computational state. However, it is

less clear whether an arbitrary disjunction of phase-space regions can legitimately

implement a computational state. Critics of Putnam suspect that some disjunctions

of phase space are legitimate candidates to implement a computational state, whereas

others are not. his objection would block Putnam’s argument, but it is not easy to

make it stick. he problem is that it is hard to say which disjunctions are legitimate
and why. As we will see in Section 7, answering this turns out to be the central

point on which theories that aim to replace M disagree. Which further conditions –

semantic, teleological, causal, natural kind, pragmatic, etc. – should a disjunction

of physical states satisfy to count as a ‘legitimate’ implementer of a computational

state?

Second, many computations have inputs (and outputs), and so fall outside the scope

of Putnam’s argument. His response is that although physically speciûed inputs and

outputs would partially constrain implementation, the computational states that lie

between input and output would still be open to his triviality argument. A separate

concern, developed by Godfrey-Smith (2009) and Sprevak (2012), is that the inputs

and outputs of computations are rarely speciûed physically. Inputs and outputs are

typically described as abstract states within the abstract computational formalism

(e.g. as numerals, characters, strings, or activation values). hese abstract states

could, in principle, be implemented by any physical state type (electrical signals,

vibrations in the air, turns of a brass cog). As abstract states, computational inputs

and outputs seem just as vulnerable to Putnam’s triviality argument as internal

computational states.¹²

hird, Putnam’s mapping describes how the physical state of the rock changes over

time. But there is no guarantee that the rock would satisfy thismapping had the phys-

ical conditions been (even slightly) diòerent: for example, if one photon more had

hit the surface of the rock before t0. Onemight think that an implementation should

not be vulnerable to destruction by arbitrarily small physical changes. Putnam’s

mapping also only covers abstract states that actually occur during the computation.

It does not cover abstract states or transitions that could have occurred but did

not. Computers, especially complicated ones, have states and transitions that do

not occur on a given run but that could have occurred under other conditions.¹³

¹²For more on this point, see discussion of the ‘transducer layer’ in Godfrey-Smith (2009) and

‘strong’ and ‘weak’ input–output constraints in Sprevak (2012).

¹³See Maudlin (1989) for an illustration of this point with Turing machines.
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On the basis of these two observations, one might argue that an implementation

of a computation should satisfy two counterfactual conditions. First, the physical

transitions described by the mapping should be ‘reliable’: they should not fail under

small physical changes. Second, the mapping should be ‘exhaustive’: it should map

every abstract state and transition of the computer to a physical state and trans-

ition, including those of merely possible states and transitions. Putnam’s argument

only describes what actually happens, so it cannot guarantee that either of these

counterfactual conditions is satisûed.

4.4 Chalmers’ clock and dial

he counterfactual objection to Putnam’s triviality argument was once widely be-

lieved to be fatal (Block, 1995; Chalmers, 1995; Chrisley, 1995; Maudlin, 1989).

Chalmers (1996a) showed that this assumption is wrong. He constructed a more

sophisticated triviality argument, based on Putnam’s, that satisûes the counterfactual

conditions.

Chalmers deûnes a ‘clock’ as a component of the physical system that reliably transits

through a sequence of physical states over the time interval.¹4 He deûnes a ‘dial’

as a physical component of the system with an arbitrary number of physical states

such that if it is put into one of those states it stays in that state during the time

interval. Chalmers’ counterfactually strengthened triviality result is that every

physical system with a clock and a dial implements every inputless FSA.

he argument involves a similar construction to Putnam’s, but over possible, as well

as actual, trajectories in phase space. In one respect the construction is simpler,

since the only states that need to be considered are the physical system’s clock and

dial; the other physical states can be safely ignored. Chalmers’ strategy is to identify

a mapping between each formal FSA state and a disjunction of physical states [i , j]
of the implementing system, where i corresponds to a numbered clock state, and

j to a numbered dial state, and show that the relevant physical states stand in the

right counterfactual relations to each other.

Suppose the system starts in physical state [1, j]. It will reliably transit to [2, j],
[3, j], and so on, as the clock progresses. Suppose that the system starts its actual

run in dial state 1. he start state of the FSA can then be mapped to [1, 1], and

the subsequent abstract states of the FSA to [2, 1], [3, 1], and so on. At the end of

this mapping process, if some FSA states have not come up, then choose one of

those formal states as the new start state of the FSA and map [1, 2] to it. hen pair

¹4Chalmers’ ‘clock’ is diòerent from the clocks in Putnam’s argument. Putnam’s clocks are external

signals that cause the system’s physical state to evolve in a non-cyclical way. Chalmers’ clocks are

inside the system and they change their physical state in a counterfactually robust way.
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physical states [2, 2], [3, 2], and so on, with the abstract states that follow in the

evolution of the FSA. Continue until all the un-manifested states of the FSA have

been considered. Now, for each abstract state of the FSA, we have a non-empty set

of associated physical states {[i1, j1], [i2, j2], . . . , [in , jn]}. Map the disjunction of

these states to each FSA state. he resulting mapping between physical and formal

states satisûes the counterfactually strengthened version of M.

Chalmers argues that almost all open physical systems have a clock and a dial. If for

any reason a physical system does not have a clock or a dial, those components can

be added by attaching a watch to the physical system. If trivial implementation can

be achieved simply by adding a watch, something has gone wrong with the account

of implementation.

5 he reach of the arguments

None of the preceding arguments claim that every physical system implements

every computation. In what sense do they show that implementation is ‘trivial’?

Broadly speaking, we can measure their strength along three dimensions: time and

chance, physical systems, and abstract computations.

First, time and chance. One reason why Hinckfuss’ argument seems weak is that

trivial implementation is only claimed for a brief time period and conditional on

some lucky accident. Searle’s argument tries to pump our intuitions to raise the

chance of trivial implementation happening more o�en and over a longer time

interval, but he gives no proof that this must occur. he arguments of Putnam and

Chalmers are unrestricted in their time interval. hey also provide a higher degree of

certainty (conditional on various empirical assumptions) that trivial implementation

occurs in that period. heir time interval could, in principle, be as long or short as

one likes: t0 to tn could be one second, one year, or 109 years (provided the physical

system is still around).

Second, physical systems. Hinckfuss and Searle suggest that only macroscopic

systems (like pails of water or walls) are vulnerable to trivial implementation. On

Putnam’s account, a physical system is vulnerable to trivial implementation provided

it satisûes the Principles of Noncyclical Behavior and Continuity. On Chalmers’

account, a physical system is vulnerable to trivial implementation provided it has a

clock and a dial. here is no reason why the conditions described by Putnam and

Chalmers cannot be satisûed by microscopic as well as macroscopic systems. A

small group of atoms, even a single atom, could vary its state in such a way as to

satisfy these conditions. Putnam’s and Chalmers’ arguments therefore appear to

threaten systems that are small or simple in Hinckfuss’ and Searle’s terms.
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hird, abstract computations. Which abstract computations are trivially imple-

mented? Familiar abstract computations include FSAs, Turing machines, register

machines, pushdown automata, cellular automata, random access machines, and

artiûcial neural networks. hese, however, are just a tiny sample from the vast

population of possible computers. Which abstract computers are subject to trivial

implementation? We can put an upper bound on the triviality arguments here.

Some abstract computers are impossible to implement in a physical system. Plaus-

ible examples include inûnitely accelerating computers (for which each step takes

place faster than the previous step), computers that use inûnite time or storage,

and computers that manipulate real-valued quantities with unlimited precision.¹5

hese abstract computers are normally regarded as notional computers and studied

for their formal properties alone (e.g. proving which sentences in the arithmetic

hierarchy they decide). hey cannot be, and they are not intended to be, physic-

ally implemented. he triviality arguments thus have a limit. Not every abstract

computation is trivially implemented because not every abstract computation is

implementable.

Searle claims that all ‘programs’ are trivially implemented. It is hard to be sure what

he means by this. In computer science, a ‘program’ refers to a piece of data that

plays a certain role within a certain kind of computer, one that is programmable.

Programmable computers are a relatively small sub-population within the class

of abstract computers (most Turing machines are not programmable). A physical

system that implements a program must ipso facto implement a programmable

computer. Searle thinks that his triviality result applies to a wider range of computers

than just the programmable ones. So, he does not seem to have the above deûnition

of ‘program’ in mind. It appears that the term has a more generic meaning, roughly

synonymous with algorithm or computational method. But then his argument would

be unrestricted with regard to formal computations, and we have seen that this is

not right.

Chalmers and Putnam restrict their triviality claims to only one type of computer:

inputless FSAs. We have seen their claims may be extended to FSAs with inputs

and outputs. What about other abstract computers? In the remainder of this

section, I argue that their triviality claims generalize, beyond FSAs, to all abstract

computers with ûnite storage. Speciûcally, their claims generalize to every physically
implementable computer.

he argument for this generalization relies on three claims:

1. here is an isomorphism between the physical activity of any open physical

system, A, (with a clock and dial) and any FSA, B.

¹5Blum et al. (1998); Copeland (2002); Piccinini (2011).
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2. If there is an isomorphism between A and B, and an isomorphism between B
and C, then there is an isomorphism between A and C.

3. here is an isomorphism between any computer with ûnite storage, C, and
an FSA, B.

he ûrst premise is the conclusion of the triviality arguments. he second premise

states the formal property of transitivity of the isomorphism relation. he third

premise requires justiûcation, which is given below. he argument runs as fol-

lows. Pick any open physical system, A, and any abstract computer with ûnite

storage, C. By premise 3, there is an isomorphism between C and some FSA, B. By
premise 1, there is an isomorphism between A and FSA B. By premise 2, there is an

isomorphism between A and C. Hence, A implements C.

Justifying premise 3 is not hard. he state of any abstract computer with ûnite

storage, C, can be described by a single monolithic ‘state’ variable, X. his state

variable, X, enumerates every possible way in which that abstract computer could

be. For example, each value of X (x1, x2, . . ., xn) may denote a possible tape and

head state combination for a Turing machine, a possible grid pattern for cells of a

cellular automaton, and a possible setting of activation levels and weights for an

artiûcial neural network. Since C has ûnite storage, its monolithic state variable X
can only take a ûnite number of possible values – otherwise, one could use it to gain

a computer with inûnite storage. he next value of C’s monolithic state variable is

determined by its current value.¹6 For example, the next value (tape and head state

combination) of a Turing machine is determined by its current value (tape and head

state combination). he behavior of C can then be fully described by a directed

graph (perhaps a large one) of C’s state variable and possible transitions between its

values (plus any inputs or outputs where relevant). his directed graph uniquely

speciûes an FSA, B. Conversely, FSA B, under the scheme for labeling ways C could
be with values of a giant state variable, uniquely speciûes C. his establishes an

isomorphism between B and C, which is what premise 3 requires.

he class of abstract computers with ûnite storage is a large one. here are good

¹6I focus here only on deterministic computers. It is worth considering how the argument might

generalize further to non-deterministic computers. his would require proving a version of the

Putnam/Chalmers triviality result for non-deterministic FSAs. One way to do this would be to

augment their assumptions to require that the physical system contain some random physical

element. One could then partition the random element’s physical state into physical types with

appropriate probabilities for the FSA’s states and map abstract states of the non-deterministic FSA

to appropriate disjunctions of triples of states of the clock, dial, and random element. What would

remain is to prove a non-deterministic analogue of premise 3. his would require showing that

there is an isomorphism between any non-deterministic computer with ûnite storage, C, and some

non-deterministic FSA, B. he argument could follow the line of reasoning given in the main text

for premise 3.
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reasons to think that it contains the class of abstract computers that are physically

implementable.¹7 Any physical implementation has only ûnite resources to do its

work. hese resources may be plentiful (e.g. all the energy and time in the system’s

forward light cone), but they are ûnite. hismeans that any physical implementation

will eventually fail on a large enough input. For example, any PC one builds will

eventually fail to recognize {anbn ∣ n ≥ 0} for large enough n. If a physical system

only has ûnite resources to do its work, then it only has ûnite storage. Consequently,

any physical system only has the capacity to implement an abstract computer with

ûnite storage. he upper limit on storage is likely to be large – large enough that it

is o�en ignored. We o�en idealize electronic PCs by treating them as if they had

unlimited storage. But strictly speaking, only implementation of abstract computers

with ûnite storage is possible.

he preceding points indicate that the triviality arguments have a very far reach.

here is no gap between the abstract computers that can be implemented and those

that are implemented trivially. he triviality arguments are eòectively unrestricted

in this respect. If an abstract computation is physically implementable, it is trivially

implemented.¹8

6 What is so bad about trivial implementation?

Onemightwonderwhywe cannot simply accept that computational implementation

is trivial. M has other virtues: it is simple, clear, explanatory, and makes the truth of

claims about computational implementation objective. Perhaps these virtues are

worth the cost of accepting that implementation is trivial.

However, M would remain problematic for at least three reasons:

1. M’s violation of extensional adequacy needs explanation.

2. Combined with computational functionalism, M entails panpsychism.

3. M drains computational explanations in the sciences of their power.

All of these considerations have some force, but I will argue that the third consider-

ation is the most signiûcant.

he premise of the current response is that violating extensional adequacy is a price

worth paying to keep M. Given this, it is not immediately obvious how pointing

(again) to violation of extensional adequacy has any further force against a defender

¹7See Rabin and Scott (1959).

¹8Chalmers (2012) aims to block this consequence for his preferred computational architecture,

combinatorial state automata, by modifying M to require that computational states be implemented

by ‘independent’ components of a physical system; see Section 7 for discussion.
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of M. Violating extensional adequacy may be bad, but the defender of M already ad-

mits it. he question is whether there are further problems that she needs to address

as a consequence. One such problem is to explain whyMdiverges so much from the

judgments of experts in the computational sciences. A hard-nosed revisionist might

say we have discovered that the experts in the computational sciences were wrong

and they should revise their claims about computational implementation accord-

ingly (e.g. start saying that PC cases do run Grandhe� Auto). A less revisionary

response would be to explain disagreement between M and existing scientiûc prac-

tice by appeal to pragmatic factors. For example, computational implementation

may, strictly speaking, be trivial but this is not displayed in scientiûc practice – and

need not be so displayed – because scientists attend to, and talk about, only the

implementations that interest them. Other implementations are ‘there’, but they

are not of interest and so not discussed. Talk of ‘the’ computation that a physical

system implements should be understood as shorthand to direct our attention to an

implementation that interests us and away from those that do not.¹9

he second consideration raises problems for M but only conditional on compu-

tational functionalism being true. Computational functionalism claims that if a

physical system implements a certain computation then it has certain mental states

and processes. According to the triviality arguments, nearly every physical sys-

tem implements nearly every computation. Consequently, nearly every physical

system has nearly every mental state and process. Computational functionalism

was popular in the 1970s and 1980s (Block, 1978; Fodor, 1987; Putnam, 1975), but

it is not clear how widely the view is endorsed today, even the qualiûed versions

described in Section 4.1. Current cognitive science appeals to physical computations

to explain behavior and mental processes. But this empirical work is usually silent

about whether those computations are metaphysically suõcient for mental life.

Consequently, it is unclear how much weight, if any, to accord this consideration as

a source of problems for M.

he third consideration should cause more concern. Cognitive science explains,

predicts, and describes human behavior and mental processes in terms of computa-

tions. Decision making, categorization, inference, and belief revision are explained

by the brain implementing distinctive computations. Cognitive science explains

particular aspects of behavior and mental processing (behavioral or psychological

‘eòects’) by appeal to the brain implementing certain computations. Speciûc eòects

¹9A parallel could be drawnwith howLewis (1970) andMackie (1974) treat causes and background

conditions. According to Lewis and Mackie, there is no objective distinction between a cause and

a background condition. hey defuse disagreement between this and our everyday talk (which

does distinguish between causes and background conditions) by appeal to the pragmatics of causal

discourse. Talk of causes and background conditions is a pragmatic device to direct our attention to

the causes that interest us.
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occur because the brain implements one computation rather than another. his

explanatory strategy is threatened by the triviality results. If implementation is

trivial, then no distinctive computations are implemented by the brain. he brain,

like almost every other physical system, implements almost every computation.

Explaining psychological eòects by appeal to distinctive computations would not

work because there are no distinctive computations. Granted that this explanatory

strategy is important in cognitive science, it is diõcult to see how one could continue

to pursue cognitive science while accepting the triviality results.

7 How to respond to triviality arguments

here is widespread agreement that unmodiûedMmakes computational implement-

ation trivial. here is also agreement that trivial implementation is incompatible

with the explanatory goals of cognitive science. Unfortunately, there is little agree-

ment about what to do about it. Competing proposals attempt to modify M in

order to block the triviality arguments. hese proposals tend to fall into four broad

categories.

Physical/causal structure proposals. hese proposals dive deeper into the physical and

causal nature of physical systems to ûnd diòerences that matter for implementation.

Chalmers (1996a) claims that physical states that implement distinct computational

states should be ‘independent’ components of the physical system. What Chalmers

means by ‘independent’ is not entirely clear: he suggests understanding it as the

requirement that the physical states occupy diòerent spatial regions. Unfortunately,

as he acknowledges, this condition is too strong; it rules out legitimate implementa-

tions (Sprevak, 2012). As an alternative, Godfrey-Smith (2009) suggests that physical

states that implement the same abstract state should be ‘physically similar’ to each

other and ‘physically diòerent’ from those that implement diòerent abstract states.

Again, the meaning of ‘physical similarity’ is unclear, but in any case the condition is

too strong. Two physical states within the same computation that implement diòer-

ent abstract states may not just be physically similar, theymay be physically identical.

his happens in virtualized machines and in an ordinary PC when physical memory

is reorganized during a memory remap (Sprevak, 2018).

Semantic proposals. Some physical computers manipulate representations. An

electronic PC manipulates electrical signals that represent numbers when it com-

putes an answer to an addition problem. Semantic accounts of implementation

suggest that only those physical systems that manipulate representations implement

computations. As Fodor said, ‘[t]here is no computation without representation’

(1981, p. 180). he computational identity of a physical system is determined by

which representations it manipulates and how it manipulates them (Sprevak, 2010;
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Shagrir, 2010). Walls and rocks do not implement computations because they do

not contain representations, or if they do, they do not manipulate them in the right

way. Like the physical/causal proposals, semantic proposals face the accusation that

they are too strong. Not every physical computation manipulates representations.

Some computers, like parsers, appear to be ‘purely syntactic’ and do not manipulate

representations at all (Piccinini, 2008).

Teleological proposals. Physical parts of a computer o�en have teleological func-

tions related to that computation. A memory unit inside a PC has the teleological

function of storing data. Teleological accounts of implementation suggest that only

physical systems with the right teleological functions implement computations. he

computational identity of a physical system is determined by the teleological func-

tions of its physical parts and how those parts are related (Bontly, 1998; Piccinini,

2015). Walls and rocks do not implement computations because they do not have

the teleological functions associated with computing. Like the physical/causal and

semantic proposals, teleological proposals face the accusation that they are too

strong. Teleological functions are relational properties: they depend on the physical

system satisfying conditions about how users treat it, the intentions of designers,

the system’s evolutionary history, or the system’s possible successes in particular

environments. However, an intrinsic duplicate of a computer – one that lacks these

relations – still seems to be a computer. A further wrinkle is that naturalistic ac-

counts of teleological function suggest that naturalized teleological functions are

sparsely instantiated and have a large degree of indeterminacy in their identity

(Burge, 2010; Shea, 2013). It is unlikely there is a suõciently rich and determinate

set of natural teleological functions to ground the computational claims of cognitive

science.

Anti-realist proposals. Physical computers tend to be physical systems that are useful

to us, or salient to us, as computers in light of our human interests, values, and

our human cognitive and perceptual machinery. An electronic PC is a convenient

means for us to implement a word processing program in a way that a rock is not.

Anti-realist accounts suggest that it is because certain physical systems oòer a useful

means for us to implement a computation that they implement that computation.

he computational identity of a physical system is determined by how the physical

properties of the system interact with our human-centered interests and perceptual

and cognitive abilities. Walls and rocks do not implement computations, isomorph-

isms notwithstanding, because we cannot conveniently use them for computing.

he relevant isomorphisms are ‘there’ but worthless to us because we do not know

how to control the physical states thatmap to relevant computational inputs, outputs,

or intermediate states. ‘Usefulness’ here is not simply a matter of subjective utility.

One person wanting something to implement a computation shouldn’t make it so.

An anti-realist account of implementation would likely appeal to what is generally
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useful, explanatory, perspicuous, informative, or practicable in science.

Anti-realism is the route downwhich Searle and Putnamwish to push us. Ultimately,

their goal is to show not that computational implementation is trivial, but that

computational implementation unconstrained by human interests and values is trivial.
Unlike physical/causal, semantic, and teleological proposals, anti-realism gets the

extension of computational implementation more or less correct. It ûts closely with

the judgments associated with comp and ident in existing computational practice.

However, it has a cost. Anti-realism gives up on the naturalistic desideratum with

regard to a theory of computational implementation. It accepts that computational

implementation is not a natural or objective matter of fact. To the extent that

implementation is non-trivial, implementation is 100 percent a function of our

(perhaps a broad ‘our’ referencing a scientiûc community) interests, values, and

human perceptual and cognitive abilities. Scientiûc explanations that reference

computational implementation have to acknowledge this. hey explain by invoking

a mind-dependent, observer-relative notion. Given that computational explanation

in cognitive science is valued as a way to understand the mind in objective, non-

mind-dependent terms, this should cause worry.

8 Conclusion

Triviality arguments teach us that unmodiûedM is unacceptable. Diòerent theorists

plump for diòerent modiûcations to M, with diòerent costs, in order to block the

triviality arguments. It is unfortunate that there is little agreement here, but on the

positive side, it is good that triviality arguments provide a hard-to-meet constraint

on theorizing. Without constraints that push back against us, wewould be theorizing

about implementation in the dark. he triviality results are not an embarrassment.

hey provide a valuable source of information that can guide us towards improved

theories of computational implementation.

Each option canvassed in Section 7 incurs a cost. Typical costs were that the the-

ory is too strong or that it gives up on the naturalistic desideratum of a theory of

implementation. Before closing, I wish to suggest that we can minimize costs by

adopting a form of pluralism about computational implementation. Each of the

constraints described in Section 7 has some element of truth in it: it describes how

implementation is constrained in some circumstances. he mistake the accounts

make is that they say implementation is constrained in the same way in every cir-
cumstance. Scientiûc practice allows for more diversity than this. Implementation

may be constrained sometimes in one way, sometimes in another. he relevant con-

straints in diòerent circumstances may invoke physical relations, semantic content,

teleological functions, or human-centered interests and values. he problem we
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saw in Section 7 was that appealing to a single constraint does not do the work in all

circumstances (or at least not without cost). A pluralist account of computational

implementation says that the factor that constraints implementation varies between

contexts. Whatever constraint can be claimed present (without cost!) in that context

– be it physical, semantic, teleological, or pragmatic – does the work of constraining

implementation in that context. Absent such constraints, implementation is trivial.

But in any context where implementation is not trivial, at least one such constraint

kicks in. If more than one constraint is available, then con�icting claims about

implementation may arise (e.g. the system both implements a computation and

does not implement the computation relative to diòerent standards). his may result

in groups of researchers talking past each other, or more commonly, in acknowledg-

ment that there is a legitimate sense in which the relevant physical system does and

does not perform a computation. A pluralist approach oòers answers to comp and

ident that re�ect the nuances of scientiûc practice while avoiding the costs of a

one-size-ûts-all approach to the triviality arguments.
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