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1 Introduction

he Language ofhought (LOT) is closely associated with the work of Jerry Fodor.

He defended the idea in his book,he Language ofhought (1975), and continued to

do so,with relativelyminor revisions, throughout his career. Susan Schneider’s book

does not aim to be an exegesis or defence of Fodor. Instead, it oòers an alternative to

Fodor’s version of LOT that she says is an improvement and a worthy replacement.

Her aim is to overcome three challenges that faced his approach.

According to both Fodor and Schneider, LOT’s goal is to explain human thought

in naturalistic, mechanical terms. Schneider deûnes LOT as a package of three

claims to this end. First, having a thought involves tokening ‘symbols’ in your head

and combining those symbols into well-formed symbolic expressions according to

language-like grammatical and semantic rules. Second, thinking is a computational

process involving LOT symbols and symbolic expressions. hird, the semantic value

of an LOT symbol is determined by it standing in a naturalistic causal or nomic

‘locking’ relation to entities in the world.

Schneider says that Fodor’s version of LOT faces three challenges:
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1. Central reasoning is not a computational process

2. he notion of a LOT symbol is unclear

3. LOT is unable to handle Frege cases

In this review, Iwill describe the three challenges and Schneider’s proposed solution.

Aswill become clear, I don’t entirely agreewith everything Schneider says. Especially

with respect to her answer to (2), I think that her version of LOT incurs costs that

should lead us to question it. But notwithstanding this,my overall impression of

her book is a positive one. his book will undoubtedly set the agenda for future

work on LOT. It places the o�en-ignored problem of the nature of LOT symbols at

the centre of the LOT debate and it shows how solutions to this problem reach out

and touch many other aspects of the theory. he quality of scholarship and writing

is high throughout. Unusually for a philosophy monograph, it is also fun to read.

2 Central reasoning is not computational

Fodor famously argued against LOT as a theory of central reasoning. Fodor deûned

central reasoning as non-demonstrative reasoning that is sensitive to all (or nearly

all) of one’s beliefs. Central reasoning is meant to cover processes such as how we

revise our beliefs in light of evidence, how wemake inductive inferences, and how

we construct practical plans to achieve our goals. According to Fodor, two problems

stop LOT from being able to account for central reasoning: the globality problem

and the relevance problem. (hese are sometimes misleadingly called the ‘frame

problem’; see Shanahan (1997) for a description of the real frame problem.)

First, the globality problem. Fodor said that certain properties of individual repres-

entations – their simplicity, centrality, and conservativeness – are ‘global’ in the sense

that these properties vary with context; they are not intrinsic to the representations

of which they are predicated. Sometimes adding a certain belief to one’s belief set

will complicate a plan; sometimes it will simplify it. A belief ’s ‘simplicity’ does not

supervene on that belief ’s intrinsic properties. herefore, it does not supervene on a

belief ’s syntactic properties. Computational processes are sensitive only to syntactic

properties. So, says Fodor, reasoning that requires sensitivity to global properties

cannot be a computational process, and thus falls outside the remit of LOT.

Schneider, in a chapter co-written with Kirk Ludwig, responds that a computer

is not sensitivemerely to the syntax of individual representations. A computer is

also sensitive to syntactic relations between representations: how a representation’s

syntax relates to the syntax of other representations and how these relate to the

system’s general rules of syntactic processing. he failure of an individual repres-

entation’s simplicity to supervene on the representation’s syntactic properties does

not mean that simplicity cannot be tracked by a computational process. Simplicity
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may supervene on (and be computationally tracked by following) syntactic interac-

tions between representations. It is worth noting that Fodor (2000) considered this

possibility too in a view he labels M(CTM). However, he argued that this solution

would run into the relevance problem, shi�ing attention to the other part of his

argument. (See Samuels (2010) for a helpful reconstruction of Fodor’s argument

here.)

he relevance problem arises because central reasoning has access to a large number

of representations: potentially all of the system’s beliefs, desires, and thoughts. Any

one of these could be relevant to the system’s reasoning in any given case, but usually

only a few are. he human central reasoning system tends to focus on just those

representations that are relevant to the agent’s current goals, plans, and context.

How does it know which representations are relevant without doing an exhaustive,

impracticable search through its entire database? Fodor says we do not know of any

computational process that would solve this problem. (We don’t know of any non-

computational process either, but never mind that.) He says that the diõculty of the

relevance problem explains our failure to produce a computer with artiûcial general

intelligence (AGI). Successful AI systems tend to excel at narrowly deûned tasks

(like playing Go or detecting your face), but they do not show general intelligence:

they are poor at pulling together relevant information from disparate sources to

make plans outside their narrowly deûned area of competence.

Building onwork by Shanahan and Baars (2005) andDehaene and Changeux (2004),

Schneider argues that a solution to the relevance problem can be found within

Global Workspaceheory (GWT). GWT says that multiple ‘specialist’ cognitive

processes compete for access to a global cognitive ‘workspace’. If granted access, the

information a specialist has to oòer is ‘broadcast’ back to other specialists. Access to

the global workspace is controlled by ‘attention-like’ processes. he contents of the

globalworkspaceunfold in a largely serialmanner over time. Schneider identiûes the

serial unfolding with central reasoning, and she argues that the relevance problem

is solved by the ceaseless parallel work of the specialists.

I am not convinced by this solution. GWT describes a functional architecture – and

in the case of its neuronal version, an anatomical architecture – that the brain could

use to share andmanage information. In this respect, GWT pertains to part of the
relevance problem: in order to bring information to bear in central reasoning there

must be channels to share and manage information. But, and it is an important

but, GWT does not say how traõc along those channels is regulated to guarantee

relevance. It does not explain how relevant, and only relevant, information is

shepherded into the global workspace. Shanahan and Baars don’t attempt to explain

this, and neither does themore neurally orientated GWT work. he answer cannot

be bottom-up pressure from specialists (for there is no reason to think that the
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specialist who shouts loudest contains relevant information); it also cannot be top-

down selection by some executive process (for that would introduce the relevance

problem for that executive process). How then does the reasoning system ensure

that relevant, and only relevant, information ûlters into the global workspace?

If the answer is ‘attention’, what mechanism keeps attention aligned to what is

relevant to the system in the current context? Baars and Franklin (2003) describe

interplay between ‘executive functions’, ‘specialist networks’, and ‘attention codelets’

that control access to the global workspace. Unfortunately, how these components

work to track relevance is le� largely unspeciûed. A computational solution to the

relevance problem may be compatible with GWT; but GWT, as it currently stands,

is largely silent about how relevance is computed.

What would it take to ûnd a computational solution to the relevance problem?

Fodor linked this to our ability to build a working AGI. Schneider disagrees: she

says this sets the bar too high. I do not think so. Building a working computational

model that can engage in non-trivial non-demonstrative reasoning shows that we

know how to solve the relevance problem; that we really know how to solve it and

not just oøoad the hard parts onto an unexplained part of themodel (for example,

‘executive function’, ‘attention’). Building an artiûcial simulation capable of solving

the relevance problem is the hallmark that a computational solution to the problem

has been found.

Fodor thought that we would never ûnd a solution and he cited a long history of

AGI failures in support. However, past failure is only a guide to the future if the

computational techniques explored so far are representative of those that we will

discover in the future. Fodor’s conûdence in this strikesme as unfounded. Schneider

may overreach when she says that GWT already solves the relevance problem, but

her overall strategy – promoting the opportunities oòered by novel computational

architectures – strikes me as fundamentally correct. here aremore computational

architectures than were dreamt of in Fodor’s philosophy (or than we can dream

of today). GWT is one, but there aremany others. Deep Q-networks, completely

unrelated to GWT, show promising elements of domain-general reasoning. A

single deep Q-network can play forty-nine Atari computer games, o�en at super-

human levels, switching strategy depending on the game it plays (Mnih et al., 2015).

Signiûcantly, the network is never told which game it is playing. It works this out

for itself from the pattern of pixels it ‘sees’. he network pulls together, by itself, a

policy relevant for playing the game in hand. his isn’t AGI or a solution to the

relevance problem, but it’s a step in the right direction.
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3 What is a LOT symbol?

LOT explains thought and thinking in terms of LOT symbols, but what is a LOT

symbol? If you look inside someone’s head, you don’t see anything that looks like a

symbol. How then should we understand LOT’s talk of symbols inside the head?

Schneider calls this question the ‘elephant in the room’ for LOT. Fodor did little

to address it; he focused instead on arguing for explanatory and predictive gains

that would �ow to psychology from positing LOT symbols, whatever those symbols

happen to be.

If one is puzzled aboutwhat some thing is, a plausible opening gambit is to substitute

the question of what it is with a question about its individuation conditions. his is

Schneider’s strategy. Her question, then, becomes: when are two physical tokens –

in particular, two brain states – of the same LOT symbol type?

Schneider discards two theories of LOT symbol individuation before proposing her

own.

he ûrst theory she discards is a ‘semantic’ theory. A semantic theory of symbols

says that two physical tokens are of the same symbol type just in case they have

the same semantic content. Schneider’s objection is that a semantic theory would

con�ict with LOT’s ambition to give a reductive, naturalistic theory of semantic

content. LOT is committed to explaining the semantic content of LOT symbols

in terms of naturalistic (causal or informational relations) relations between LOT

symbols and the world. his reductive project won’t work if one of the players in

the reductive base – LOT symbols – themselves depend on semantic content.

he second theory Schneider rejects is an ‘orthographic’ theory. An orthographic

theory says that two physical tokens are of the same symbol type just in case they

have the same ‘shape’. he ink marks on this page can be grouped into symbol types

based on their physical shape. Obviously, ‘shape’ means something diòerent for

LOT symbols than it does for ink marks – you don’t ûnd neurons shaped like the

letter ‘a’. Schneider rejects the orthographic theory because it does not provide an

account of this alternative notion of ‘shape’.

Schneider’s preferred theory individuates symbols by their computational role. Her

theory says that two physical tokens are of the same symbol type just in case they

play the same computational role within the computing system. Schneider deûnes

‘playing the same computational role’ as being physically interchangeable without

aòecting the computation. Two physical tokens play the same computational role

just in case one physical token can be exchanged for the other without aòecting any

(actual or possible) computational transitions of the system. A key source of support

for her view comes from John Haugeland’s account of formal symbol systems like
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chess:

Formal tokens are freely interchangeable if and only if they are the same

type. hus it doesn’t make any diòerence which white pawn goes on

which white-pawn square; but switching a pawn with a rook or a white

pawn with a black one couldmake a lot of diòerence. (Haugeland, 1985,

p. 52)

Furthermore, Schneider argues that physical tokens should be typed by their total
computational role. hat means that any change, no matter how small, to a system’s

(actual or possible) computational transitions resulting from exchanging two of its

physical tokens entails that those tokens are not of the same symbol type.

Iwill not describe the arguments that Schneider gives to support her theory. Instead,

I wish to �ag two potential problems.

he ûrst is that her theory (and Haugeland’s) does not appear to work for more

complex computers such as modern electronic PCs. Inside a PC, physical tokens

of the same symbol type vary enormously in their physical nature; they are rarely

freely interchangeable. Conversely, physical tokens of diòerent symbol types can

sometimes be interchanged without aòecting the computation at all. his is because

modern PCs, unlike chess sets, keep track of changes in their physical tokens and

adjust their principles of physical processing accordingly. his strategy is called

‘virtualising’ the physical hardware. It occurs across multiple levels inside a PC (see

Patterson andHennessy, 2011, Ch. 5). For example, suppose that a physical token of

the symbol type ‘dog’ is tokened insidemy PC (maybe as part of an email message).

Imagine that this physical token involves electrical activity in my PC’s physical RAM

locations 132, 2342, and 4562. However, these locations, and this pattern of activity,

are not somehow reserved for ‘dog’ tokens. Nanoseconds later, tokening ‘dog’ may

involve electrical activity in diòerent physical RAM locations, say, 32, 42, and 234.

Now, tokening ‘cat’ may involve electrical activity in the old physical RAM locations

of 132, 2342, and 4562. he physical memory inside my computer is constantly

being ‘remapped’ to optimisemy computer’s performance. In such a context, using

interchangeablity of physical tokens within the computation to individuate symbol

types is hopeless. Tokens that play the same total computational rolemay not be

freely physically interchangeable (‘dog’ now and ‘dog’ a�er amemory remap), and

tokens that are freely interchangeable without aòecting the computation may play

diòerent computational roles (‘dog’ now and ‘cat’ a�er amemory remap).

What happens inside amodern PC is that physical tokens that fall under the same

symbol type vary but the PC’s physical principles ofmanipulation vary accordingly

to accommodate the change. he PC’s formal principles for manipulating symbol

types (its algorithm) stays constant throughout. (Below, I consider cases in which
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the algorithm changes too.) Imagine that, during a chess match, the physical board

were cut up into pieces and reorganised a�er everymove but the physical principles

governing movement of the chess pieceswere changed to accommodate the reorgan-

isation: black’s king’s rook can now move to diòerent squares and it is symbolised

by a horse-shaped ûgure, but it can attack, and be attacked by, the same white pieces

– the overall state of play in the game is unaòected. Only a lunatic would reorganise

their chess board like this during a chess match. But physical remapping is both

adaptive and common in electronic PCs. Onemight expect brains to use similar

virtualising tactics given their beneûts for squeezing optimal performance from

limited computing hardware.

In summary, the ûrst problem is that ‘same total computational role’ does not mean

‘physical interchangeability’, at least for computers that use virtualising strategies.

he second problem is that Schneider’s account does not provide stable symbol

types. She foreshadows this worry when she says that her proposal makes it hard for

symbol types to be shared across diòerent computers. You and I are not disposed to

undergo exactly the same computational transitions when thinking about dogs, so

we do not have the same LOT symbol types. (Maybe you have DOG1 and I have

DOG2.) In a footnote on page 130, Schneider says that similar worries apply to a

single human being over time. She has in mind relatively slow changes in someone’s

computational roles that might occur over a lifetime. However, the diõculty comes

not from slow changes, but from short-term changes produced by learning.

he algorithms run by electronic PCs are normally ûxed, either by their hardware

or by the program they are given. But computers can also modify their algorithms.

Machine learning is now common. Computers like AlphaGo modify their (hugely

complicated) algorithms in many ways in response to learning data (either labelled

examples of ‘good’ behaviour or reward/punishment signals). When learning occurs,

a computer modiûes its algorithm: total computational roles before and a�er learn-

ing are diòerent. his creates a problem for Schneider’s account of symbol identity.

She indexes symbol identity to a symbol’s total computational role, but this role

changes during learning. A change, even a small one, to a symbol’s computational

role will ramify. Remember that any change to a computational role, no matter

how minor, changes a symbol’s identity. Remember too that the computational

role of a symbol includes not just the symbol’s actual computational transitions but

also any possible transitions that it could undergo. A change induced by learning,

even one that does not aòect the actual processing of the symbol, is almost certain

to aòect some possible computational transition that the symbol could enter into –

perhaps by aòecting the computational roles of other symbols to which the symbol

is related by a sequence ofmerely possible computational transitions. Unless the

computational system is designed so as to minimise all computational relations

between its symbols (and what would be the point of amachine like that?), small
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changes to a computational role will percolate throughout the system, changing

symbol identities in their wake. he upshot is that Schneider’s symbol types are

unlikely to survive learning events.

Brains are learning computers. Indeed, our brains appear to learn even while we

are asleep (O’Neill et al., 2010; Warmsley and Stickgold, 2010). It seems reasonable

to suppose that computational roles inside the brain are not ûxed but are constantly

shi�ing, adapting to new information and trying out new strategies. In Schneider’s

account, LOT symbol types disappear across these shi�s. If LOT symbol types are

so unstable and ephemeral, it is hard to see how generalisations involving them

would be useful to science or philosophy.

It is worth emphasising that science needs LOT symbols that are stable across

learning events. Recent work on LOT proposes that the brain’s learning algorithms

perform probabilistic inference over LOT expressions (Piantadosi and Jacobs, 2016;

Piantadosi, Tenenbaum andGoodman, 2016). In order for these algorithms towork,

it is crucial that the identity of LOT expressions remains ûxed across changes to

their computational role so that the learner can consistently and rationally explore

a space of hypotheses. Learning algorithms need to be deûned over stable symbol

types that do not themselves change during learning. Interestingly, this work tends

to cite Feldman’s (2012) account of LOT symbol identity, which takes a semantic,

broadly referential, approach to explaining what makes two (noisy, probabilistic)

brain states of the same LOT symbol type. Schneider herself switches to a semantic

method for individuating brain stateswhen describing the computational principles

shared between diòerent humans – on her view, this is a non-computational way of

individuating brain states.

4 Concepts and Frege cases

LOT says that concepts are LOT symbols and that the semantic value of a concept

is purely referential. LOT therefore appears to have a problem with Frege cases: it

cannot distinguish between co-referring concepts, at least not on purely semantic

grounds. Fodor’s solution to this problem was to say that concepts should be

individuated by both their semantic properties and their syntactic properties (Fodor,

2008, Ch. 3). he concepts CICERO and TULLY have the same semantic content

(referent), but they are distinct concepts because they involve two diòerent LOT

symbols.

Schneider endorses the same solution to Frege cases as Fodor, but she inserts her

own theory of LOT symbol types. he result is a theory of concepts very diòerent

from what Fodor intended. Fodor called ‘pragmatism’ the claim that one’s concepts

depend on one’s cognitive or behavioural capacities (including recognitional, clas-
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siûcatory, inferential capacities). According to a pragmatist, to have the concept

DUCK is to be able to recognise ducks, classify ducks versus non-ducks, and perform

inferences about ducks. Fodor thought pragmatism was ‘the deûning catastrophe

of analytic philosophy of language and philosophy ofmind in the last half of the

twentieth century’ (Fodor, 2005, pp. 73–74). Schneider says that a LOT symbol’s

identity, and hence a concept’s identity, depends on its total computational role,

including its role in recognition, classiûcation, and inference. Schneider’s theory of

LOT symbols therefore entails Fodor’s hated pragmatism.

here is a delicious irony here, but should we accept Schneider’s theory of con-

cepts? While not disputing her arguments, I would like to strike a note of caution.

Schneider’s theory makes her concepts just as unstable and ephemeral as her LOT

symbol types. She says that stability is provided by unvarying semantic referents.

But an agent needs stable concepts, not just stable referents. In order for an agent’s

inferences to be valid, the same concepts need to appear in her premises as in her

conclusions. his won’t happen, or at least it is unlikely to happen, on Schneider’s

view. Concepts tokened in a premisemay not be around by the time the agent is

ready to token her conclusion. If an agent were to learn just one new thing between

tokening her premises and tokening her conclusion, her inference would likely

be invalid as her concepts would likely have changed. he purpose of LOT is to

mechanise thought. Concepts need to be stable for this; they need to hang around

long enough for an agent to use them multiple times. Individuating concepts by

their total computational rolemakes concepts too unstable. It does not allow LOT

to achieve its goal.

5 Conclusion

his book throws into relief the diõculty, and importance, of the problem of indi-

viduating LOT symbols into symbol types. Contra Schneider,my instinct is to give a

semantic solution to this problem. Unlike her, I’m not worried about LOT symbols

presupposing semantic content. I think that reductive, naturalistic accounts of

semantics already facemore serious objections than a semantically in�ected notion

of symbols. here are also independent reasons to separate LOT from a reductive,

naturalistic theory of content. LOT may be true and useful independently of the

success or failure of such a theory. Indeed,many cognitive scientists who use LOT

do not caremuch about the success of the project of naturalising semantics at all.

Schneider’s book advances the debate on LOT. She updates the theory by integrating

considerations as diverse as neurocomputational models and neo-Russellianism

about names. Her book wears its learning lightly, engaging the reader with simple

examples and clearlymotivated considerations. Whether or not you end up agreeing
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with all its claims, I would encourage you to buy and to read it.
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